
Local Reasoning in Any Language

Sean Parent | Sr. Principal Scientist
Software Technology Lab

C++

© 2024 Adobe. All Rights Reserved.

Local Reasoning

▪ Local Reasoning is the ability to reason about a defined unit of code and verify its correctness
without understanding all the contexts in which it is used or the implementations upon which it
relies.

▪ The two units of code this talk is concerned with are:

▪ Functions

▪ Classes

2

© 2024 Adobe. All Rights Reserved.

Terminology

▪ Local Reasoning is concerned with both sides of an API

▪ The client code is the code calling a function or holding an instance of a class

▪ The implementor code is the implementation of a function or class

3

© 2024 Adobe. All Rights Reserved.

Functions

void f();

4

© 2024 Adobe. All Rights Reserved.

Functions

// Does nothing
void f();

5

© 2024 Adobe. All Rights Reserved.

Functions

// Does nothing
void f() { }

6

© 2024 Adobe. All Rights Reserved.

Functions

// Returns the successor of `x`.
int f(int x) { return x + 1; }

7

Function Arguments

© 2024 Adobe. All Rights Reserved.

Function Arguments

// Increments the value of `x` by 1
void a(int& x) { x += 1; }

9

© 2024 Adobe. All Rights Reserved.

Function Arguments

// Increments the value of `x` by 1
// Precondition: no other thread of execution is accessing `x`
// during this operation
void a(int& x) { x += 1; }

10

© 2024 Adobe. All Rights Reserved.

General Preconditions:

▪ Arguments passed to a function by non-const reference cannot be accessed by other threads
during the operation

▪ Arguments passed to a function by const reference cannot be written by another thread during the
operation

▪ Unless otherwise specified

11

© 2024 Adobe. All Rights Reserved.

Function Arguments

// Increments the value of `x` by 1
void a(int& x) { x += 1; }

12

© 2024 Adobe. All Rights Reserved.

Transformations and Actions

There is a duality between transformations and the corresponding actions: An
action is defined in terms of a transformation, and vice versa:

void a(T& x) { x = f(x); } // action from transformation

and

T f(T x) { a(x); return x; } // transformation from action

– Elements of Programming, Section 2.5

13

© 2024 Adobe. All Rights Reserved.

Argument Passing

▪ let arguments

▪ const T&

▪ inout arguments

▪ T&

▪ sink arguments

▪ T&&, use a constraint when T is deduced

template <class T>
void f(T&&) requires std::is_rvalue_reference_v<T&&>;

14

© 2024 Adobe. All Rights Reserved.

Argument Qualifiers

▪ let arguments

▪ Postcondition: The client value is not modified

▪ inout arguments

▪ Postcondition: The client value may be modified

▪ sink arguments

▪ Postcondition: The client value is (assumed to be) consumed

▪ The client value may be assigned to, or destructed

15

© 2024 Adobe. All Rights Reserved.

A more complex action

// Offsets the value of x by n
void offset(int& x, const int& n) {
 x += n;
}

16

© 2024 Adobe. All Rights Reserved.

A more complex action

// Offsets the value of x by n
void offset(int& x, const int& n) {
 x += n;
}

▪ What if this is called as:

int x{2};
offset(x, x);

println("{}", x);

16

© 2024 Adobe. All Rights Reserved.

A more complex action

// Offsets the value of x by n
void offset(int& x, const int& n) {
 x += n;
}

▪ What if this is called as:

int x{2};
offset(x, x);

println("{}", x);

4

16

© 2024 Adobe. All Rights Reserved.

A more complex action

// Offsets the value of x by n
void offset(int& x, const int& n) {
 for (int i = 0; i != n; ++x) ;
}

17

© 2024 Adobe. All Rights Reserved.

A more complex action

// Offsets the value of x by n
void offset(int& x, const int& n) {
 for (int i = 0; i != n; ++x) ;
}

▪ What will this print?

int x{2};
offset(x, x);

println("{}", x);

17

© 2024 Adobe. All Rights Reserved.

A more complex action

vector a{ 0, 1, 1, 0 };

erase(a, a[0]);

println("{}", a);

18

© 2024 Adobe. All Rights Reserved.

A more complex action

vector a{ 0, 1, 1, 0 };

erase(a, a[0]);

println("{}", a);

▪ What will this print?

[1, 0]

– https://godbolt.org/z/hP1dsTPsa

18

© 2024 Adobe. All Rights Reserved.

General Preconditions:

▪ inout and sink arguments cannot be accessed except directly by the implementation for the
duration of the call

▪ let arguments passed by reference cannot be mutated for the duration of the call

▪ Unless otherwise specified

19

© 2024 Adobe. All Rights Reserved.

Swift Law of Exclusivity

To achieve memory safety, Swift requires exclusive access to a variable in order
to modify that variable. In essence, a variable cannot be accessed via a different
name for the duration in which the same variable is being modified as an inout

argument or as self within a mutating method.

– Swift 5 Exclusivity Enforcement

20

https://www.swift.org/blog/swift-5-exclusivity/

© 2024 Adobe. All Rights Reserved.

Rust Borrowing

Mutable references have one big restriction: if you have a mutable reference to
a value, you can have no other references to that value.

– The Rust Programming Language: References and Borrowing

21

https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html

Projections

© 2024 Adobe. All Rights Reserved.

Function Results

// Returns the successor of `x`.
int f(int x) { return x + 1; }

23

© 2024 Adobe. All Rights Reserved.

Return-by-reference

vector a{0, 1, 2, 3};
a.back() = 42;

println("{}", a);

[0, 1, 2, 42]

24

© 2024 Adobe. All Rights Reserved.

Projection Qualifiers

▪ Projections qualifiers mirror argument qualifiers

▪ Mutable (T&) projections allows the projected objects to be modified

▪ Constant (const T&) projections do not allow the projected object to be modified

▪ Consumable (T&&) projections allow the projected objects to be consumed

25

© 2024 Adobe. All Rights Reserved.

Projection Qualifiers

▪ Returning consumable projections are uncommon

▪ Usually return by-value is used but consumables may be more efficient when extracting a value
from an rvalue:

T&& extract() &&;

▪ Mutable projections may also be consumed but require an additional operation to restore
invariants on the owning object. i.e.

auto e{std::move(a.back());}
a.pop_back(); // erase the moved-from object

26

© 2024 Adobe. All Rights Reserved.

Projection Validity

▪ A projection is invalidated when:

▪ The object they are projected from is modified other than through a projection

vector a{0};
int& p{a[0]}; // p is a projection
a.push_back(1); // p is invalidated

27

© 2024 Adobe. All Rights Reserved.

Projection Validity

▪ A projection is invalidated when:

▪ The object they are projected from is modified other than through the projection or another
non-overlapping projection

28

© 2024 Adobe. All Rights Reserved.

Projection Validity

▪ A projection is invalidated when:

▪ The object they are projected from is modified other than through the projection or another
non-overlapping projection

vector a{0, 1, 2, 3};
const e& = a.back();
a.clear(); // invalidates e

28

© 2024 Adobe. All Rights Reserved.

Projection Validity

▪ A projection is invalidated when:

▪ The object they are projected from is modified other than through the projection or another
non-overlapping projection

vector a{0, 1, 2, 3};
const e& = a.back();
a.clear(); // invalidates e

28

vector a{0, 1, 2, 3};
const e& = a.back();
a[2] = 42; // e is not invalidated

© 2024 Adobe. All Rights Reserved.

Projection Validity

▪ A projection is invalidated when:

▪ The object they are projected from is modified other than through the projection or another
non-overlapping projection

vector a{0, 1, 2, 3};
const e& = a.back();
a.clear(); // invalidates e

▪ The lifetime of the object they are projected from ends

28

vector a{0, 1, 2, 3};
const e& = a.back();
a[2] = 42; // e is not invalidated

© 2024 Adobe. All Rights Reserved.

Projection Validity

▪ A projection is invalidated when:

▪ The object they are projected from is modified other than through the projection or another
non-overlapping projection

vector a{0, 1, 2, 3};
const e& = a.back();
a.clear(); // invalidates e

▪ The lifetime of the object they are projected from ends

int& p{vector{0}[0]}; // p is invalidated right after creation!

28

vector a{0, 1, 2, 3};
const e& = a.back();
a[2] = 42; // e is not invalidated

© 2024 Adobe. All Rights Reserved.

Projecting Multiple Values

▪ Iterator pairs, views, and spans project a collection of values from an object

▪ They follow the same rules as reference projections

29

© 2024 Adobe. All Rights Reserved.

Projecting Multiple Values

▪ Iterator pairs, views, and spans project a collection of values from an object

▪ They follow the same rules as reference projections

vector a{3, 2, 1, 0};
copy(begin(a), begin(a) + 2, begin(a) + 1); // Invalid - overlapping

29

© 2024 Adobe. All Rights Reserved.

Projecting Multiple Values

▪ Iterator pairs, views, and spans project a collection of values from an object

▪ They follow the same rules as reference projections

vector a{3, 2, 1, 0};
copy(begin(a), begin(a) + 2, begin(a) + 1); // Invalid - overlapping

vector a{3, 2, 1, 0};
copy(begin(a), begin(a) + 2, begin(a) + 2); // OK - not overlapping

29

Objects

© 2024 Adobe. All Rights Reserved.

Objects

void f(shared_ptr<widget> p);

31

© 2024 Adobe. All Rights Reserved.

Objects

void f(shared_ptr<widget> p);

▪ What is the type of the argument for f()?

31

© 2024 Adobe. All Rights Reserved.

Objects

void f(shared_ptr<widget> p);

▪ What is the type of the argument for f()?

▪ To understand f() we need to understand the extent p

31

© 2024 Adobe. All Rights Reserved.

Equational Reasoning

▪ Equational reasoning is proving that expressions are equal by substituting equals for equals.

▪ Equational reasoning explains how code works and is a component part of larger proofs.

32

© 2024 Adobe. All Rights Reserved.

Equational Reasoning

▪ Equational reasoning is proving that expressions are equal by substituting equals for equals.

▪ Equational reasoning explains how code works and is a component part of larger proofs.

▪ To know if two values are equal, we need to know the extent of the values.

32

© 2024 Adobe. All Rights Reserved.

Equality

▪ Equality is an equivalence relation (reflexive, symmetric, and transitive)

▪ Equality connects to copy (equal and disjoint)

33

© 2024 Adobe. All Rights Reserved.

Transformations and Actions

There is a duality between transformations and the corresponding actions: An
action is defined in terms of a transformation, and vice versa:

void a(T& x) { x = f(x); } // action from transformation

and

T f(T x) { a(x); return x; } // transformation from action

– Elements of Programming, Section 2.5

34

© 2024 Adobe. All Rights Reserved.

Composite Objects and Whole-Part Relationships

▪ A composite object is made up of other objects, called its parts.

▪ The whole–part relationship satisfies the four properties of connectedness, noncircularity,
disjointness, and ownership

35

© 2024 Adobe. All Rights Reserved.

Composite Objects and Whole-Part Relationships

▪ A composite object is made up of other objects, called its parts.

▪ The whole–part relationship satisfies the four properties of connectedness, noncircularity,
disjointness, and ownership

vector a{ 0, 1, 2, 3 };

35

© 2024 Adobe. All Rights Reserved.

Composite Objects and Whole-Part Relationships

▪ A composite object is made up of other objects, called its parts.

▪ The whole–part relationship satisfies the four properties of connectedness, noncircularity,
disjointness, and ownership

vector a{ 0, 1, 2, 3 };

struct {
 string name{ "John" };
 int id{0}
} b;

35

© 2024 Adobe. All Rights Reserved.

Objects

void f(widget& p);

▪ This should only modify an instance of widget

36

© 2024 Adobe. All Rights Reserved.

Objects

void f(widget& p);

▪ This should only modify an instance of widget

▪ It should be possible to express this as:

widget f(widget&& p);

36

Extrinsic Relationships

© 2024 Adobe. All Rights Reserved.

Extrinsic Relationships

▪ An extrinsic relationship is a relationship that is not a whole-part relationship

vector a{0, 1, 2, 3};

▪ a[0] is before a[1] is an extrinsic relationship

38

© 2024 Adobe. All Rights Reserved.

Relationships

▪ A relationship is a connection between elements of two sets

▪ A relationship between objects may be severed by modifying either object

▪ A relationship may be witnessed by an object such as a pointer or index

▪ An object that is a witness to a severed relationship may be invalid

39

© 2024 Adobe. All Rights Reserved.

Local Reasoning and Extrinsic Relationship

▪ To reason locally about extrinsic relationships they should be encapsulated into a class

▪ The relationships are maintained between parts by the class

▪ The class ensures the validity and correctness of the relationships by controlling access to the
related objects

▪ An intrusive witness in a part should only be manipulated by the owning class, and explicitly
severed if the object is moved or copied outside the whole

40

Free Relationships

© 2024 Adobe. All Rights Reserved.

Free relationships

▪ A free relationship is an extrinsic relationship that is not managed between parts of an object.

▪ If we assume local reasoning what meaningful structures can we build?

42

© 2024 Adobe. All Rights Reserved.

CALM

"Question: What is the family of problems that can be consistently
computed in a distributed fashion without coordination, and what

problems lie outside that family?"

– Keeping CALM: WhenDistributed Consistency is Easy

43

https://arxiv.org/pdf/1901.01930

© 2024 Adobe. All Rights Reserved.

CALM

"Consistency As Logical Monotonicity (CALM). A program has a consistent,
coordination-free distributed implementation if and only if it is monotonic."

– Keeping CALM: WhenDistributed Consistency is Easy

44

https://arxiv.org/pdf/1901.01930

© 2024 Adobe. All Rights Reserved.

CALM

▪ Conflict-free replicated data types(CRDTs) provide an object-oriented framework for monotonic
programming patterns

▪ An immutable variable is a monotonic pattern that transitions from undefined to its final value and
never returns. Immutable variables generalize to immutable data structures

45

Summary

© 2024 Adobe. All Rights Reserved.

Summary

▪ Interfaces should make the scope of the operation clear

▪ Projections provide an efficient way to achieve value semantics and manipulate parts

▪ It is the client's responsibility to uphold the Law of Exclusivity

▪ Don't pass projections that overlap an inout argument projection

▪ Implementors provide types with value semantics

▪ Confine extrinsic relationships between parts within a class

47

© 2024 Adobe. All Rights Reserved.

About the artist

Leandro Alzate

Berlin-based illustrator Leandro Alzate mixes bright
color palettes and stylized characters in his fanciful
work for editorial and advertising clients. He draws
inspiration from observing the ways people interact,
and combines that with his passion for architectural
shapes and spaces. He created this piece for the
German Ministry of Economy to encourage people to
explore work-from-home career opportunities.
Working with brushes and vector shapes, Alzate
created this piece entirely in Adobe Photoshop.

Made with

48

© 2024 Adobe. All Rights Reserved.49

