The Tragedy of C++
Adobe Acts One & Two

Sean Parent | Sr. Principal Scientist
Adobe Software Technology Lab

Be

Artwork by MUE Studio

EEEEEEREEREEEENEEEYE YRR
C$ A GGG < < < < GG <G G G & &
1 O QG << S GGG G GG o
¢ $ GGG << < <G <G <G G G &
{99 GG Q<SG G G
S S CCQQCQ << << GG <G
{ S S S GGG QG <9< < GGG <

4.
.- .|L"|._ =

(3]]

iring

Adobe is H

.-O:
GO
." .ﬁt. 0\ "a "'l.
s o Fes

.

: 7
' % ‘ b by MUE Studio
‘il

0 GGG G < < < << G GG GGG &G
C$ (GGG << < <SG G G &G & &
QG < < < G GG GG GG
C$ C$ GGG << < < GG G &G & &
{99 GG Q<SG G G
S G QCSCCCQQQ<<S<E<CCECCGG
{ S S S QG Q<9< < GGG <

Prologue

0 GGG G < < < << G GG GGG &G
C$ (GGG << < <SG G G &G & &
QG < < < G GG GG GG
C$ C$ GGG << < < GG G &G & &
{99 GG Q<SG G G
S G QCSCCCQQQ<<S<E<CCECCGG
S S G Q(Q<99 << GGG <

Act One - The Power of C++

C++ History

'\‘ Adobe © 2022 Adobe. All Rights Reserved.

C++ History

= Born of a marriage between Simula and C

'4‘ Adobe © 2022 Adobe. All Rights Reserved.

https://stroustrup.com/hopl2.pdf
https://stroustrup.com/hopl-almost-final.pdf
https://dl.acm.org/doi/10.1145/3386320
https://www.stroustrup.com/dne.html

C++ History

= Born of a marriage between Simula and C

» A History of C++:1979— 1991

= Evolving a language in and for the real world: C++ 1991-2006

= Thriving in a crowded and changing world: C++ 2006-2020

'&‘ Adobe © 2022 Adobe. All Rights Reserved.

https://stroustrup.com/hopl2.pdf
https://stroustrup.com/hopl-almost-final.pdf
https://dl.acm.org/doi/10.1145/3386320
https://www.stroustrup.com/dne.html

C++ History

= Born of a marriage between Simula and C

» A History of C++:1979— 1991

= Evolving a language in and for the real world: C++ 1991-2006

= Thriving in a crowded and changing world: C++ 2006-2020

= The Design and Evolution of C++

'&‘ Adobe © 2022 Adobe. All Rights Reserved.

https://stroustrup.com/hopl2.pdf
https://stroustrup.com/hopl-almost-final.pdf
https://dl.acm.org/doi/10.1145/3386320
https://www.stroustrup.com/dne.html

The Obvious

'\‘ Adobe © 2022 Adobe. All Rights Reserved.

The Obvious

» Performance

'&‘ Adobe © 2022 Adobe. All Rights Reserved.

The Obvious

» Performance

= Platform support

'4‘ Adobe © 2022 Adobe. All Rights Reserved.

The Obvious

= Performance
= Platform support

= Tooling

'4‘ Adobe © 2022 Adobe. All Rights Reserved.

The Obvious

= Performance
= Platform support

= Tooling

High-level

'4‘ Adobe © 2022 Adobe. All Rights Reserved.

The Obvious

= Performance
= Platform support

= Tooling

High-level

» Available libraries

'4‘ Adobe © 2022 Adobe. All Rights Reserved.

C Interop

* You don't have to thunk to C

= For the most part, include a C++ header and use it

'4‘ Adobe © 2022 Adobe. All Rights Reserved.

Standard

'\‘ Adobe © 2022 Adobe. All Rights Reserved.

Standard

= Specification

F\\ Adobe © 2022 Adobe. All Rights Reserved.

Standard

= Specification

= Multiple implementations

'4‘ Adobe © 2022 Adobe. All Rights Reserved.

Standard

= Specification
= Multiple implementations

= Committee process

'4‘ Adobe © 2022 Adobe. All Rights Reserved.

Community

'\‘ Adobe © 2022 Adobe. All Rights Reserved.

Community

* Brilliant minds

F\\ Adobe © 2022 Adobe. All Rights Reserved.

Community

* Brilliant minds

= Generally helpful

'4‘ Adobe © 2022 Adobe. All Rights Reserved.

Community

* Brilliant minds
= Generally helpful

= Active

'4‘ Adobe © 2022 Adobe. All Rights Reserved.

Generic Programming

 The STL

'&‘ Adobe © 2022 Adobe. All Rights Reserved.

Mutable Value Semantics

= User-defined types can behave like built-in types

'4‘ Adobe © 2022 Adobe. All Rights Reserved.

C++
Flexible abstraction & efficient by definition.

'K‘ Adobe © 2022 Adobe. All Rights Reserved.

0 GGG G < < < << G GG GGG &G
C$ (GGG << < <SG G G &G & &
QG < < < G GG GG GG
C$ C$ GGG << < < GG G &G & &
{99 GG Q<SG G G
S G QCSCCCQQQ<<S<E<CCECCGG
S S G Q(Q<99 << GGG <

Act Two - The Health of C++

Beauty

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

> > > > > > B> B> > B> > b B> B> B> D> b D D

> D

> > b D
> D> D> D

> >
> D> D
> D>
>DD>D>bDbBD>DD
> 5> > 5> 55> 5> b

>

=
D>

D>
>

> D
> D

> > b b b b
>>D>D>Db>D

> D
> B
> D

>D>b>D>D

>>D>D>D

>D>D

> D>

> b

>
D>

>>b>>DbD>DD
> > > > > > > b

>

> > > > > > > B> > b B> B> B> D> B> b b D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

C++ Standard

= C++98 Standard

= /57 Pages
C++11 Standard

= 1338 Pages
C++20 Standard

= 1807 Pages (523 pages for the language and support libraries)

'4‘ Adobe © 2022 Adobe. All Rights Reserved.

libc++ pair

#1ifndef _
#define _

#inc lude
#1inc lude
#inc lude
#inc lude
#1inc lude
#inc lude
#inc lude
#1inc lude

LIBCPP__ UTILITY PAIR H
LIBCPP___ UTILITY PAIR H

_config>
_functional/unwrap_ref.h>
_tuple>

_utility/forward.h>
_utility/move.h>
_utility/piecewise_construct.h>
<cstddef>

<type_traits>

<_
<_
<_
<_
<_
<_

_LIBCPP_PUSH_MACROS

#inc lude

< __undef_macros>

_LIBCPP_BEGIN_NAMESPACE_STD

temp late

<class _T1, class _T2>

struct _LIBCPP_TEMPLATE_VIS pair

{

typedef _T1 first_type;
typedef _T2 second_type;

~T1 first;
T2 second;

© 2022 Adobe. All Rights Reserved.

_LIBCPP_PUSH_MACROS
#include < undef _macros>

_LIBCPP_BEGIN_NAMESPACE_STD
template <class _T1, class _T2>
struct _LIBCPP_TEMPLATE_VIS pair
{
typedef _T1 first_type;
typedef _T2 second_type;

_T1 first;
T2 second;

pair(pair const&) = default;

pair(pair&&) = default;

template <bool _Val>

using _EnableB _LIBCPP_NODEBUG_TYPE = typename enable_if< _Val, bool>::type;

struct _CheckArgs {
template <int&...>
static constexpr bool __enable_explicit _default() {
return 1s_default _constructible< T1>::value
&& 1s_default _constructible< T2>::value
& ! enable_implicit _default<>();

}

template <int&...>
static constexpr bool _ _enable implicit _default() {
return __1s_1implicitly default_constructible< T1>::value
& _1s_1implicitly default_constructible< T2>::value; ©2022 Adobe. All Rights Reserved.

F\\ Adobe © 2022 Adobe. All Rights Reserved.

C++20
502 lines

'4‘ Adobe © 2022 Adobe. All Rights Reserved.

C++20
502 lines

C++11
372 lines

'4‘ Adobe © 2022 Adobe. All Rights Reserved.

F\\ Adobe

C++20
502 lines

C++11
372 lines

C++98 (SGI)
62 lines

© 2022 Adobe. All Rights Reserved.

"We're getting an error that has something to do with
rvalue references and std::pair.”

'K‘ Adobe © 2022 Adobe. All Rights Reserved.

Beauty

C:/WinSdk/Include/10.0.18362.0/ucrt\time.h(36): error C2220: the following warning is treated
as an error
C:/data/msvc/14.33.31424-Pre/include\utility(190): warning C4800: Implicit conversion from
' Ty' to bool. Possible information Lloss
with
[

]
C:/data/msvc/14.33.31424-Pre/include\utility(190): note: consider using explicit cast or
comparison to @ to avoid this warning
C:/data/msvc/14.33.31424-Pre/include\utility(190): note: see declaration of ' Ty'
C:/data/msvc/14.33.31424-Pre/include\xmemory(673): note: see reference to function template
instantiation 'std::pair<const int,bool>::pair< Ty, Ty,0>(Otherl &&, Other2 &&) noexcept'
being compiled

with

[

_Ty=1nt

_Ty=1nt,
_Otherl=int,
_Other2=1nt
]
C:/data/msvc/14.33.31424-Pre/include\xmemory(680): note: see reference to function template
instantiation 'std::pair<const int,bool>::pair< Ty, Ty,0>(Otherl &&, Other2 &&) noexcept'
bé B.erg comp 1 led © 2022 Adobe. All Rights Reserved.

_Ty=bool,
_Pr=std:: less<int>
]
<source>(9): note: see reference to function template instantiation
'std::ipalir<std:: _Tree 1iterator<std:: Tree_val<std:: Tree_simple_types<std::palir<const
int,bool>>>>,bool>
std:: Tree<std:: Tmap_traits< Kty, Ty, Pr, Alloc, false>>::emplace<int,int>(int &&,int &&) '
being compiled
with
[
_Kty=1int,
_Ty=bool,
_Pr=std:: less<int>,
_Alloc=std::allocator<std::pair<const int,bool>>
]
<source>(9): note: see reference to function template instantiation
'std::ipalir<std:: _Tree 1iterator<std:: Tree_val<std:: Tree_simple_types<std::palir<const
int,bool>>>>,bool>
std:: Tree<std:: Tmap_traits< Kty, Ty, Pr, _Alloc, false>>::emplace<int,int>(int &&,int &&) '
being compiled
with
[
_Kty=1int,
_Ty=bool,
_Pr=std:: less<int>,
_Alloc=std::allocator<std::pair<const int,bool>>

'\‘ Adobe © 2022 Adobe. All Rights Reserved.

Beauty & Correctness

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

> > > > b > B> B> > b > B> B> B> B> D> b b D

> > b > b b b

> > b > b b > b b

>

> D

A A
AQ A
AQ A
AQ A
AQ A
AQ A
ADA
AQ A
AQ A
AQ A
AQ A
AQ A
AQA
AQ A
AQ A
AQ A
AQ A
AD A
ADA

> > b

> > > > > > > > D> b D> D

D>

> > b

> > > > > > B> B> > > B> B> B> > B> b b D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

Beauty
The ease with which a language allows the
expression of correct code.

'K‘ Adobe © 2022 Adobe. All Rights Reserved.

Preconditions

'\‘ Adobe © 2022 Adobe. All Rights Reserved..

Preconditions

= A Precondition is an assertion that must be true before an operation

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Preconditions

= A Precondition is an assertion that must be true before an operation

sort(first, last, compare)

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Preconditions

= A Precondition is an assertion that must be true before an operation

sort(first, last, compare)

- [first, last) isavalidrange (implying first <= last)

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Preconditions

= A Precondition is an assertion that must be true before an operation

sort(first, last, compare)
- [first, last) isavalidrange (implying first <= last)

» Forallpintherange [f1rst, last),p isdereferenceable

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Preconditions

= A Precondition is an assertion that must be true before an operation

sort(first, last, compare)
- [first, last) isavalid range (implying first <= last)
» Forallpintherange [f1rst, last),p isdereferenceable

= Forall p, let v equal the set of values *p;

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Preconditions

= A Precondition is an assertion that must be true before an operation

sort(first, last, compare)
- [first, last) isavalid range (implying first <= last)
» Forallpintherange [f1rst, last),p isdereferenceable
= Forall p, let v equal the set of values *p;

 Forall pairs(va, Vb), compare is a predicate establishing a strict-weak-order relation

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Preconditions

= A Precondition is an assertion that must be true before an operation

sort(first, last, compare)
- [first, last) isavalid range (implying first <= last)
» Forallpintherange [f1rst, last),p isdereferenceable
= Forall p, let v equal the set of values *p;

 Forall pairs(va, Vb), compare is a predicate establishing a strict-weak-order relation

= The domain of an operation is the set of values satisfying all preconditions

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Preconditions

'\‘ Adobe © 2022 Adobe. All Rights Reserved..

Preconditions

* When preconditions are not satisfied:

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Preconditions

‘
* When preconditions are not satisfied: " “a.\- 5

F\\ Adobe © 2022 Adobe . All Rights Reserved .

Preconditions

‘e O
* When preconditions are not satisfied: " “a\ 5 /
= An operation may lead to undefined behavior /

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Preconditions

‘e, O
* When preconditions are not satisfied: " “a.\ 5 /

= An operation may lead to undefined behavior /

= The result may be unspecified and may violate class invariants

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Preconditions

‘e, O
* When preconditions are not satisfied: " “a.\ 5 /

= An operation may lead to undefined behavior /
= The result may be unspecified and may violate class invariants

* It may lead to program termination

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Safety

'\‘ Adobe © 2022 Adobe. All Rights Reserved..

Safety

= An operation is safe if it cannot lead to undefined behavior

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Safety

= An operation is safe if it cannot lead to undefined behavior

= Directly or indirectly

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Safety

= An operation is safe if it cannot lead to undefined behavior
= Directly or indirectly

= Even if the operation preconditions are violated

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Safety

= An operation is safe if it cannot lead to undefined behavior
= Directly or indirectly
= Even if the operation preconditions are violated

 An unsafe operation may lead to undefined behavior if preconditions are violated

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Safety

= An operation is safe if it cannot lead to undefined behavior
= Directly or indirectly
* Even if the operation preconditions are violated
 An unsafe operation may lead to undefined behavior if preconditions are violated

= Either directly or during subsequent operations, safe or not

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Safety

= An operation is safe if it cannot lead to undefined behavior
= Directly or indirectly
* Even if the operation preconditions are violated
 An unsafe operation may lead to undefined behavior if preconditions are violated

= Either directly or during subsequent operations, safe or not

= We refer to an operation that terminates on a precondition violation or has no preconditions, as
strongly safe

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Safety

'\‘ Adobe © 2022 Adobe. All Rights Reserved..

Safety

= Safety is about incorrect code and the scope of damage it may cause

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Safety

= Safety is about incorrect code and the scope of damage it may cause

= Errors are about correct code and recoverable situations

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Safety

= Safety is about incorrect code and the scope of damage it may cause

= Errors are about correct code and recoverable situations

= Safety is a transitive property

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Safety

= Safety is about incorrect code and the scope of damage it may cause

= Errors are about correct code and recoverable situations

= Safety is a transitive property

= Correctness Is not transitive

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Safety

= Safety is about incorrect code and the scope of damage it may cause

* FErrors are about correct code and recoverable situations
= Safety is a transitive property

= Correctness Is not transitive

= Strong safety is not transitive

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Safety, Correctness, & Efficiency

'&‘ Adobe © 2022 Adobe. All Rights Reserved..

Safety, Correctness, & Efficiency

= Safety bounds the behavior of incorrect code

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Safety, Correctness, & Efficiency

= Safety bounds the behavior of incorrect code
= Strong safety with tight preconditions can assist with correctness by catching mistakes at runtime
= Safety can also mask errors by providing consistent if incorrect results

= Safety is fundamentally at odds with efficiency

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Safety, Correctness, & Efficiency

'&‘ Adobe © 2022 Adobe. All Rights Reserved..

Safety, Correctness, & Efficiency

* Integer overflow in C++ is undefined behavior

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Safety, Correctness, & Efficiency

* Integer overflow in C++ is undefined behavior

= Defining overtlow as modulo-2 arithmetic is safe but hides unintended overflow
* And also comes at some cost to efficiency

= Defining overflow as trapping would catch mistakes

= But would come at an additional cost on most processors, including x64 and ARM

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

LImits of Safety

'\‘ Adobe © 2022 Adobe. All Rights Reserved..

LImits of Safety

= Within a safe, Turing-complete language you can build an unsafe C machine

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

LImits of Safety

= Within a safe, Turing-complete language you can build an unsafe C machine

= The damage of incorrect code will be contained within the simulation

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

LImits of Safety

= Within a safe, Turing-complete language you can build an unsafe C machine

= The damage of incorrect code will be contained within the simulation

safety = sandboxing

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

LImits of Safety

= Within a safe, Turing-complete language you can build an unsafe C machine

= The damage of incorrect code will be contained within the simulation

safety = sandboxing

= See asm,s

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Truth

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

&\
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

> > b > b b b
> D> D> D

D>

> D

> D>
>DD>D>bDbBD>DD
> 5> > 5> 55> 5> b

> D

A

> > b

D>

> D> D
>D>D
>>D>b>bbD>DD
> > > 5>5> 55>

> > > b
> D

> >
> B

>D>b>D>D

D>

D>

A

> D
>>D>D>D

D>

> D>

> D
> D

>
D>

>

> > > > > > > B> > b B> B> B> D> B> b b D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

Desktop Compute Power (8-core 3.5GHz Sandy Bridge + AMD Radeon 6950)

© 2012 Adobe Systems Incorporated. All Rights Reserved. 30 "‘

Adobe

Desktop Compute Power (8-core 3.5GHz Sandy Bridge + AMD Radeon 6950)

0 750 1500 2250 C10]0]0,

GPU Vectorization ™ Multi-thread Scalar (GFlops)

© 2012 Adobe Systems Incorporated. All Rights Reserved. 30 "‘

Adobe

Desktop Compute Power (8-core 3.5GHz Sandy Bridge + AMD Radeon 6950)

OpenGL
OpenCL
CUDA
Direct Compute
C++ AMP
DirectX

0 750 1500 2250 C10]0]0,

GPU Vectorization ™ Multi-thread Scalar (GFlops)

© 2012 Adobe Systems Incorporated. All Rights Reserved. 30 "‘

Adobe

Desktop Compute Power (8-core 3.5GHz Sandy Bridge + AMD Radeon 6950)

OpenGL
OpenCL
CUDA
Direct Compute
C++ AMP
DirectX

Intrinsics
Auto-vectorization
OpenCL

0 750 1500 2250 C10]0]0,

GPU Vectorization ™ Multi-thread Scalar (GFlops)

© 2012 Adobe Systems Incorporated. All Rights Reserved. 30 "‘

Adobe

Desktop Compute Power (8-core 3.5GHz Sandy Bridge + AMD Radeon 6950)

OpenGL
OpenCL
CUDA
Direct Compute
C++ AMP
DirectX

Intrinsics
Auto-vectorization
OpenCL

0 750 1500 2250 C10]0]0,

GPU Vectorization ™ Multi-thread Scalar (GFlops)

© 2012 Adobe Systems Incorporated. All Rights Reserved. 30 "‘

Adobe

Desktop Compute Power (8-core 3.5GHz Sandy Bridge + AMD Radeon 6950)

OpenGL
OpenCL
CUDA
Direct Compute
C++ AMP
DirectX

Intrinsics
Auto-vectorization
OpenCL

Straight C++

0 750 1500 2250 C10]0]0,

GPU Vectorization ™ Multi-thread Scalar (GFlops)

© 2012 Adobe Systems Incorporated. All Rights Reserved. 30 "‘

Adobe

Two kinds of parallel

© 2012 Adobe Systems Incorporated. All Rights Reserved. 31 "‘

Adobe

Two kinds of parallel

Functional Data Parallel

$

——

© 2012 Adobe Systems Incorporated. All Rights Reserved. 31 "‘

Adobe

Ad-hoc Threading

'\‘ Adobe © 2022 Adobe. All Rights Reserved..

Ad-hoc Threading

= The speaker notes for the previous slide contained this note:

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Ad-hoc Threading

= The speaker notes for the previous slide contained this note:

= "Ad hoc threading — over 100 threads in Photoshop CS5, most waiting for their feature or library to
be called’’

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Ad-hoc Threading

= The speaker notes for the previous slide contained this note:

= "Ad hoc threading — over 100 threads in Photoshop CS5, most waiting for their feature or library to
be called’’

= For the current Photoshop, that number is closer to 2000

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Ad-hoc Threading

= The speaker notes for the previous slide contained this note:

= "Ad hoc threading — over 100 threads in Photoshop CS5, most waiting for their feature or library to
be called’

= For the current Photoshop, that number is closer to 2000

« | dislike std::async, std::thread, and std::jthread

'4‘ Adobe © 2022 Adobe. All Rights Reserved..

Vectorization

SSE

 EEEEEEEI——
127 0

Intrinsics: great speed potential, but...

. m1281i vDst = _mm_cvttps_epi32(_mm_mul _ps(_mm_cvtepi32 ps(vSum@), vInvArea));

Moving target: MMX, SSE, SSE2, SSE3, SSE 4.1, SSE 4.2, AVX, AVX2, AVX3
|

AVX

—]

255 0

Solutions:
Auto-vectorization #pragma SIMD
CEAN Dest[:] += srclstart:length] + 2;

© 2012 Adobe Systems Incorporated. All Rights Reserved..

SIMD

= | believe a large class of SIMD problems can be expressed with generic algorithms:

simd::transform(rl, r2, out, [&](auto a, auto b) {
out((a *x alpha) + (b x (1.0 - alpha)));
) ;

'4‘ Adobe © 2022 Adobe. All Rights Reserved.

SIMD

= And | want that to vectorize even when multiplication is defined as:

normalized8 operatorx(normalized8 a, normalized8 b) {
// (a x b + 127) / 255;

auto tmp = (uint8_t)a x (uint8_t)b + 128;
return normalized8{(tmp + (tmp >> 8)) >> 8};

'4‘ Adobe © 2022 Adobe. All Rights Reserved.

Why Not Put Evervthing on the GPU?

© 2012 Adobe Systems Incorporated. All Rights Reserved. 36 "‘

Adobe

Why Not Put Evervthing on the GPU?

Data Parallel 300 : T

© 2012 Adobe Systems Incorporated. All Rights Reserved. 36 "‘

Adobe

Why Not Put Evervthing on the GPU?

Data Parallel 300 : 1
Sequential 1 : 10
© 2012 Adobe Systems Incorporated. All Rights Reserved. 36 "‘

Adobe

Truth

= Typical object-oriented paradigms of using shared references to objects break down in a massively
parallel environment

= Sharing implies either single-threaded

= Orsynchronization

= Ten years after this observation, many developers still don't understand this tweet:

'4‘ Adobe © 2022 Adobe. All Rights Reserved.

Sean Parent
@SeanParent

| think I'm going to start putting this after the declaration of all
my types.

template <> class std::shared_ptr<my type>; // Please stop.

2:959 PM - Oct 27, 2020 - Twitter Web App

'4‘ Adobe © 2022 Adobe. All Rights Reserved.

Amdahl's Law

16

15

14

13

12

11

10

Performance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Processors

© 2012 Adobe Systems Incorporated. All Rights Reserved..

To utilize the hardware we need to move towards functional, declarative, reactive,
and value semantic programming

No raw loops

Without addressing vectorization, GPGPU, and scalable parallelism, standard
C++ is just a scripting system to get to the other 99% of the machine through
other languages and libraries

Without addressing vectorization, GPGPU, and scalable parallelism, standard
C++ is just a scripting system to get to the other 99% of the machine through
other languages and libraries

Do we need such a
complex scripting system?

Truth
The confidence a language provides that
code is correct and efficient.

'K‘ Adobe © 2022 Adobe. All Rights Reserved.

Goodness

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

> > > > > > B> B> > B> > b B> B> B> D> b D D

D>
>

> D
> B
> D

B
D>

> D
> b D
> > D

>DD>DbD>D>D>DbD
> > > > b b b b

> > b b
> > D

>
>

=
D>

D>
>
>

D

> > > > > b
> >D>D>D>D
>D>b>DDODDDDDBDD

D>

>
>>D>b>bbD>DD
> > > 5>5> 55>

£

>
D>
D

> > > > > > > B> > b B> B> B> D> B> b b D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

Content Ubiquity

Ubiquitous access to: Photos
calendar Flickr
contacts Facebook
notes & tasks Adobe Revel

e-mail (corporate and personal) Documents

A full web experience
Google Docs

Microsoft Office

Music

iTunes Music Match

Spotify

Pandora Everything...
Movies

Netflix

Vudu

Content ubiquity is access to all
your information, on all your
devices, all of the time

Fa\
Adobe

Demo

'\‘ Adobe © 2022 Adobe. All Rights Reserved.

F\\ Adobe

Bringing Adobe's Creative Cloud to the web:
Starting with Photoshop

© 2022 Adobe. All Rights Reserved.

https://youtu.be/CF5zZZy0R9U
https://youtu.be/CF5zZZy0R9U

The Problem

Ubiquity has gone mainstream
A typical US household now has 3 TVs, 2 PCs, and 1 Smartphone

1in 3 households has an internet connected TV

A typical US worker has access to a PC at work or is provided an e-mail solution for
communication

The deluge of digital information has become a challenge to manage

How do | get this contract to my phone?

How do | get this video from my phone to my PC?

Which computer has the latest version of this photo?

Ubiquity has gone mainstream
A typical US household now has 3 TVs, 2 PCs, and 1 Smartphone

1in 3 households has an internet connected TV

A typical US worker has access to a PC at work or is provided an e-mail solution for
communication

The deluge of digital information has become a challenge to manage

How do | get this contract to my phone?

How do | get this video from my phone to my PC?

Which computer has the latest version of this photo?

Content ubiquity has
become the expectation

The Challenge

Content Ubiquity isn't a feature you can bolt-on

Dropbox, and similar technologies that require management and synchronization aren't
the solution

Achieving a seamless experience requires rethinking...
data model to support incremental changes
transactional models to support dynamic mobile environment

editor model to support partial editing (proxies, pyramid)

Ul model to support touch, small devices, 10 foot interfaces

Content Ubiquity Opens the Door to Sharing and Collaboration

If you can make changes available to other devices immediately then you can
make changes available to other apps immediately (works with sandboxing
technology)

If you can make documents available to all your devices then you can make
documents available to others - supporting both collaboration and sharing

Developer Pain

To provide a solution requires you write for multiple platforms

And many vendors are focusing on proprietary technology to get to 99% of the
machine

C++ itself becomes a fragmented scripting system

Objective-C++, Managed C++

Developer Pain

Vendor lock-in on commodity technologies only serves to slow development

including incorporating vendor specific technology that provides user benefit

Now What?

C++Next
Simplicity

Standardize access to modern hardware

0 GGG G < < < << G GG GGG &G
C$ (GGG << < <SG G G &G & &
QG < < < G GG GG GG
C$ C$ GGG << < < GG G &G & &
{99 GG Q<SG G G
S G QCSCCCQQQ<<S<E<CCECCGG
S S G Q(Q<99 << GGG <

Act Three - Now What?

F\\ Adobe

Val Language
https://val-lang.github.io/

© 2022 Adobe. All Rights Reserved.

About the artist

MUE Studio

MUE Studio in New York City, a collaboration of
Minjiin Kang and Mijoo Kim, creates visual
experiences through 3D image design and
photography. Drawing inspiration from the
architecture and culture they see around them every
day, the duo strive to blur the boundary between
fantasy and reality in their work. For this piece, they
used Adobe Photoshop and Cinema 4D to build a
dreamlike space that connects emotionally with
viewers and offers them an escape.

Made with

. Adobe Photoshop

.-O:
GO
." .ﬁt. 0\ "a "'l.
s o Fes

.

: 7
' % ‘ b by MUE Studio
‘il

