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So what does reasoning about software correctness have to do with HPC?

Speed without correctness is just a faster path to failure


▪ Concurrency makes reasoning about correctness more difficult
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“Understanding why software 
fails is important, but the real 
challenge is understanding why 
software works.”


– Alexander Stepanov
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Abstract. Generic programming depends on the
decomposition of programs into components which may be
developed separately and combined arbitrarily, subject only
to well-defined interfaces.  Among the interfaces of interest,
indeed the most pervasively and unconsciously used, are
the fundamental operators common to all C++ built-in types,
as extended to user-defined types, e.g. copy constructors,
assignment, and equality. We investigate the relations which
must hold among these operators to preserve consistency
with their semantics for the built-in types and with the
expectations of programmers.  We can produce an
axiomatization of these operators which yields the required
consistency with built-in types, matches the intuitive
expectations of programmers, and also reflects our
underlying mathematical expectations.
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Robert W. Floyd 

ASSIGNING MEANINGS TO PROGRAMS1 

Introduction. This paper attempts to provide an adequate basis for 
formal definitions of the meanings of programs in appropriately defined 
programming languages, in such a way that a rigorous standard is established 
for proofs about computer programs, including proofs of correctness, 
equivalence, and termination. The basis of our approach is the notion of 
an interpretation of a program: that is, an association of a proposition 
with each connection in the flow of control through a program, where the 
proposition is asserted to hold whenever that connection is taken. To prevent 
an interpretation from being chosen arbitrarily, a condition is imposed on 
each command of the program. This condition guarantees that whenever 
a command is reached by way of a connection whose associated proposition 
is then true, it will be left (if at  all) by a connection whose associated 
proposition will be true at  that time. Then by induction on the number of 
commands executed, one sees that if a program is entered by a connection 
whose associated proposition is then true, it will be left (if a t  all) by a 
connection whose associated proposition will be true a t  that time. By this 
means, we may prove certain properties of programs, particularly properties 
of the form: "If the initial values of the program variables satisfy the 
relation Ri, the final values on completion will satisfy the relation Rs." 
Proofs of termination are dealt with by showing that each step of a program 
decreases some entity which cannot decrease indefinitely. 

These modes of proof of correctness and termination are not original; 
they are based on ideas of Perlis and Gorn, and may have made their 
earliest appearance in an unpublished paper by Gorn. The establishment 
of formal standards for proofs about programs in languages which admit 
assignments, transfer of control, etc., and the proposal that the semantics 
of a programming language may be defined independently of all processors 
for that language, by establishing standards of rigor for proofs about 

^his work was supported by the Advanced Research Projects Agency of the Office of 
the Secretary of Defense (SD-146). 
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Reasoning About Code: Hoare Logic

Hoare logic, also known as Floyd-Hoare logic, describes computation statements as a Hoare triple





Where  is a precondition,  is an operation, and  is the postcondition.


Statements are combined with rules for assignment, consequence, composition, and iteration.


Given a sequence of statements and assuming an initial precondition, if we can show that the 
subsequent postconditions guarantee subsequent preconditions are satisfied, then the program is 
correct.

P{Q}R .

P Q R
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Math Notation Glossary




for all ∀ (universal quantifier)

there exists ∃ (existential quantifier)
in ∈

such that ∋
not ¬

implies ⟹
iff ⟺ (if and only if)

logical and ∧
logical or ∨
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Properties of Addition for Integers ( )ℤ




∀a, b, c ∈ ℤ (a + b) + c = a + (b + c) (associative)

∀a, b ∈ ℤ a + b = b + a (cummutative)
∃0 ∋ ∀a,0 ∈ ℤ a + 0 = a (additive identity)

∀a ∈ ℤ, ∃(-a) ∈ ℤ ∋ a + (-a) = 0 (additive inverse)
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ℤ ≠ int

When signed integers overflow or underflow the behavior is undefined.


In Hoare logic this could be expressed as an additional axiom:


 


Leading to a Hoare-triple:


 


“Even the characterization of integer arithmetic is far from complete.” 
– C.A.R. Hoare, An Axiomatic Basis for Computer Programming

¬∃(x ∈ int) ∋ (x > maxint)

(a + b ≤ maxint){int n = a + b; }(n ≤ maxint)
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Design by Contract

Preconditions and postconditions are asserted in code, in the interface


    set_minute (m: INTEGER)
            -- Set the minute from `m'.
        require
            valid_argument_for_minute: 0 <= m and m <= 59
        ensure
            minute_set: minute = m
        end

13
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Design by Contract

Class invariants define postconditions for all (public) operations on a class


invariant
   minute_valid: 0 <= minute and minute <= 59

By extension, class invariants define a guarantee for any operation taking an instance of the class as an 
argument

14
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Implementation Limitations of Contracts

Assertions must be expressible in code


Complexity of runtime checked assertions is limited


▪ A linear time assertion on a constant operation can transform code from  to 


Cannot validate universal quantifiers, , or existential quantifiers,  without a logical verification system

O(n) O(n ∙ m)

∀ ∃
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Key Contributions of Design by Contract

Simplifies formal methods by inverting the process to top-down


▪ Given a precondition, it is simpler to prove a function satisfies a postcondition than to derive a 
preconditions and postconditions from a composition of operations


The ideas of design by contract are not limited to implementation constraints


▪ Assertions that cannot be expressed or validated directly in code can be expressed in 
documentation


Makes formal methods practical for every programmer
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“With a sufficient number of users of 
an API, it does not matter what you 
promise in the contract: all 
observable behaviors of your system 
will be depended on by somebody.”


– Hyrum Wright
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Remove the first odd number (attempt 1):

vector a{0, 1, 2, 3, 4, 5};


// Remove the first odd number

auto p = remove_if(begin(a), end(a), [odd_count{0}](int x) mutable {

    return (x & 1) && (++odd_count == 1);

});


a.erase(p, end(a));

display(a);


{ 0, 2, 4, 5 }

{ 0, 2, 3, 4, 5 }
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Possible Implementation of std::remove_if()

template <class F, class P>

auto remove_if(F f, F l, P pred) {

    f = find_if(f, l, pred); // <-- pred is passed by value


    if (f == l) return f;


    for (auto p = next(f); p != l; ++p) {

        if (!pred(*p)) *f++ = move(*p);

    }

    return f;

}
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Remove the first odd number (attempt 2):

vector a{0, 1, 2, 3, 4, 5};


// Remove the first odd number

int odd_count{0};

auto p = remove_if(begin(a), end(a), [&odd_count](int x) {

    return (x & 1) && (++odd_count == 1);

});


a.erase(p, end(a));

display(a);


{ 0, 2, 3, 4, 5 }
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Standard Requirement for Unary Predicate

“Given a glvalue u of type (possibly const) T that designates the same object as *first, pred(u) shall 
be a valid expression that is equal to pred(*first).”


pred() is a required to be a regular function.


But Hyrum’s Law…

21
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Safety & Correctness

An operation is safe if it cannot lead to undefined behavior


▪ directly or indirectly


▪ even if the operation preconditions are violated


an unsafe operation may lead to undefined behavior if preconditions are violated


▪ either directly or during subsequent operations, safe or not


Code that violates preconditions is incorrect


Safety is about the possible consequences of having a bug

22
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Requirements For Correctness

A correctly implemented operation guarantees that:


▪ If preconditions are satisfied


▪ The operation will either succeed, result matches post conditions


▪ Or report failure, return an error, throw an exception, set errno


▪ Any objects being mutated by the operation must still satisfy invariants

23
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Requirements For Correctness

If a precondition is not satisfied


▪ If the operation is safe


▪ The result is unspecified which could include:


▪ failure (return an error, throw an exception)


▪ trapping (calling terminate)


▪ leaving any object being mutated by the operation in an unspecified, possibly invalid, state

24
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Requirements For Correctness

If a precondition is not satisfied


▪ If the operation is unsafe


▪ The behavior is undefined


▪ If the operation returns, any subsequent operation is also undefined


▪ Undefined behavior may including writing to arbitrary memory, executing arbitrary functions, 
damaging the hardware, launching the missile, crashing the car… anything


▪ Compilers are free to assume undefined behavior does not happen

25
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Undefined Behavior

#include <iostream>


void function(const int& x) {

    if (&x == nullptr) std::cout << “null-reference\n";

    else std::cout << “valid\n";

}


int main() {

    int* p = nullptr;

    function(*p);

}


valid


26
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Weakening Preconditions

An implementation may do something specifiable and safe when a precondition is violated


▪ It is tempting to weaken preconditions and specify those cases


▪ Because Hyrum…


But should we?

27



“It’s complicated.”

– Kate Gregory
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Safety, Correctness, Strong & Weak Preconditions

Undefined behavior is always incorrect


▪ If undefined behavior can be asserted (UBSan), you have strong safety


▪ Otherwise undefined behavior is unsafe


Unspecified is safe


▪ May mask correctness issues unless an allowed behavior is to trap


Specified behavior (weakening preconditions)


▪ May mask correctness issues

29
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Undefined Behavior Can Catch Defects

30
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Strong Preconditions

Pros


▪ Provide flexibility of implementation


▪ Can ascribe meaning and intent to an operation


▪ Simplify requirements and reasoning about code


Cons


▪ Limit clever uses that exploit otherwise defined behavior


▪ Allow for variance in behavior between implementations


▪ Open an opportunity for Hyrum’s law

31
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“We call the set of axioms 
satisfied by a data type and a set 
of operations on it a concept.”


– Fundamentals of Generic 
Programming
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Concepts

Concepts are a named set of requirements


▪ axioms specifying the semantics of operations (semantic requirements)


▪ operation preconditions and postconditions (contractual requirements)


▪ operation complexity (complexity requirements)

35
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C++20 Concepts

In C++20, concepts associate a documented set of semantic, contractual, and complexity requirements 
with a set of named operations (syntactic requirements)


▪ Similar to how natural language works, we associate meaning with words


▪ Example: equality_comparable requires


▪ operator== is defined and the result is convertible to bool (syntactic)


▪ operator== is an equivalence relation (semantic)


▪ The arguments to operator== are within the domain of the operation (contractual)


▪ operator== executes in time proportional to the area of the object (complexity)
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Concepts

Associate semantics & complexity with syntax


Defines a component that will work for any type satisfying the requirements


Assign meaning to an unbounded set of operations


An argument is required to satisfy a concept


A data type or operation may guarantee it is able to satisfy a concept

37
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Requirements vs Guarantees

A requirement applies to the parameters of a (parameterized) type or operation 


A guarantee applies to an instance of an object, or objects:


▪ Asserting such an instance satisfies a requirement (or models a concept)

38
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Requirements

distance(f, l) requires:


▪ f and l satisfy InputIterators


▪ preincrement, ++i, postincrement, (void)i++, and postincrement and dereference, *i++


▪ precondition: i != l


▪ f and l satisfy TrivialIterator


▪ f and l satisfy Assignable, EqualityComparable, DefaultConstructible


▪ EqualityComparable precondition: arguments are in the domain of ==


▪ precondition: [f, l) is a valid range

39
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Requirements

Naming the set of requirements is a significant simplification


The concept std::input_iterator encapsulates a complex set of syntactic and semantic requirements


Only the syntactic requirements are enforced by the compiler but analyzers and sanitizers can validate 
some of  the semantic requirements


Concepts in the standard are requirements on the parameters of the library components


▪ The standard types are often described as guaranteeing they satisfying some concepts

40
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Concepts

Named requirements, or concepts, are distilled from:


▪ A set of related components (algorithms, containers, types…)


▪ A set of common models


They create a simple way to match data types to components and know the result will work correctly


▪ For a specific component, requirements may be stronger than those required by the implementation


The purpose is not to specify the implementation but to specify the meaning

41



std::find(first, last, value)
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Meaning of Equality

Two objects are equal iff they represent the same entity (i.e., have the same value)


Equality is an equivalence relation





Consistent with other operations on the type


∀a a = a (reflexive)
∀a, b a = b ⟺ b = a (symmetric)

∀a, b, c (a = b ∧ b = c) ⟹ a = c (transitive)

∀a, b b → a ⟹ a = b (equivalence of copies)

∀a, b a ≮ b ∧ b ≮ a ⟺ a = b (excluded middle)
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SGI STL std::find() documentation

template<class InputIterator, class EqualityComparable>
InputIterator find(InputIterator first, InputIterator last,
                   const EqualityComparable& value);

Requirements on types

EqualityComparable is a model of EqualityComparable.
InputIterator is a model of InputIterator.
Equality is defined between objects of type EqualityComparable and objects of InputIterator's value type.

Preconditions

[first, last) is a valid range.

Complexity

Linear: at most last - first comparisons for equality.

44
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SGI STL EqualityComparable documentation

Expression semantics

Invariants

Name Expression Precondition
Equality x == y x and y are in the domain of ==

Identity &x == &y implies x == y
Reflexivity x == x
Symmetry x == y implies y == x
Transitivity x == y and y == z implies x == z

45
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C++20 std::find() specification (25.6.5)

template<class InputIterator, class T>

  constexpr InputIterator find(InputIterator first, InputIterator last,

                               const T& value);

Let E be:


	*i == value for find;


Returns: The first iterator i in the range [first, last) for which E is true. Returns last if no 
such iterator is found.

46
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C++20 Cpp17EqualityComparable requirements

Table 27: Cpp17EqualityComparable requirements [tab:cpp17.equalitycomparable]

Expression Return type Requirement

a == b convertible to bool  == is an equivalence relation, that is, it has the 
following properties:

— For all a, a == a.

— If a == b, then b == a.

— If a == b and b == c, then a == c.

47
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NaN refresher - a value that is not equality comparable

nan(“”) is typically generated by 0.0/0.0


nan(“”) == nan(“”) is false (irreflexive)


nan(“”) does not satisfy the requirements of EqualityComparable or Cpp17EqualityComparable
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Find Without Equality

double a[]{ 0.8, 7.0, nan(""), 3.0, 2.4 };


auto p = find(begin(a), end(a), nan(""));


if (p == end(a)) {

    cout << "not-found\n";

} else {

    cout << "found: " << *p << "\n";

}


not-found
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Find Without Equality

double a[]{ 0.8, 7.0, nan(""), 3.0, 2.4 };


auto p = find(begin(a), end(a), 3.0);


if (p == end(a)) {

    cout << "not-found\n";

} else {

    cout << "found: " << *p << "\n";

}


found: 3
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A Subtle Change…

If std::find() required Cpp17EqualityComparable, the following code would be undefined behavior:


double a[] { 0.8, 7.0, 42.3, 3.0, 2.4 };


auto p = find(begin(a), end(a), 3.0);


The above code is well defined with the SGI definition of EqualityComparable

51



© 2021 Adobe. All Rights Reserved.

SGI STL EqualityComparable documentation

Expression semantics

Invariants

Name Expression Precondition
Equality x == y x and y are in the domain of ==

Identity &x == &y implies x == y
Reflexivity x == x
Symmetry x == y implies y == x
Transitivity x == y and y == z implies x == z

52
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SGI STL EqualityComparable documentation

Precondition
x and y are in the domain of ==
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C++20 Cpp17EqualityComparable requirements

Table 27: Cpp17EqualityComparable requirements [tab:cpp17.equalitycomparable]

Expression Return type Requirement

a == b convertible to bool  == is an equivalence relation, that is, it has the 
following properties:

— For all a, a == a.

— If a == b, then b == a.

— If a == b and b == c, then a == c.
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The term domain of the operation is used in the ordinary 
mathematical sense to denote the set of values over which an 
operation is (required to be) defined. This set can change over time. 
Each component may place additional requirements on the domain 
of an operation. These requirements can be inferred from the uses 
that a component makes of the operation and are generally 
constrained to those values accessible through the operation's 
arguments.
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Domain of the Operation

The domain of an operation is not the types of the arguments


For a type, , to satisfy a requirement, :


 


 must guarantee that


 


double and float satisfy EqualityComparable


▪ So long as nan is not in the set being compared


▪ The absence of nan in the sequence for find() is a precondition of EqualityComparable

T P

∀a P(a)

T

∃a ∈ T ∋ P(a)
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Weaker Preconditions

std::find_if() will return the first element for which a predicate is true


template <class I, class T>

I find(I first, I last, const T& value) {

    return find_if(first, last, [&](const auto& e) {

        return value == e;

    });

}


The additional requirements comes with the use of operator==


Otherwise the meaning of find and the meaning of equality is weakened


▪ Our ability to reason about code is weakened
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Weaker Preconditions

std::find_if() will return the first element for which a predicate is true


template <class I, class T>

I find(I first, I last, const T& value) {

    return find_if(first, last, [&](const auto& e) {

        return e == value;

    });

}


The additional requirements comes with the use of operator==


Otherwise the meaning of find and the meaning of equality is weakened


▪ Our ability to reason about code is weakened
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std::find() is broken in C++20

std::find() doesn’t require that there exist any equality comparable values in T


▪ Cpp17EqualityComparable is broken because the definition implies operator== is total


std::find() doesn’t guarantee that it finds value, even if value exists in the sequence


The meaning of std::find() is reduced to works-as-implemented


Fortunately, it is trivial to show that iff operator== models EqualityComparable


▪ And all values in the sequence and the value being sought are in the domain of ==


▪ Then std::find() will find
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“Understanding why software 
fails is important, but the real 
challenge is understanding why 
software works.”


– Alexander Stepanov
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“The gap between code that fails and 
code that is correct is vast. Within it 
lies all the code that happens-to-
work. Strive to write correct code and 
you will write better code.”


– Me, This Talk
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About the artist

Momomi Sato


Tokyo-based artist Momomi Sato meticulously 
applies paint using toothpicks to create fanciful, 
pointillistic works of animals, patterns, and other 
colorful subjects. With a style that ranges from 
abstract to kawaii, Sato’s paintings are as charming as 
they are beautiful. For this piece, a train ride 
prompted an exploration of systems that influence 
daily life. As she stared intently at the pattern on the 
seats, the lines and shapes seemed to move and draw 
Sato into another dimension. She recreated the 
sensation by hand with acrylic paint on canvas.
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Artwork by Momomi Sato / Japan
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