e eC21

St.Louis, |science
MO |& beyond.

Reasoning About Software Correctness

Sean Parent | Sr. Principal Scientist, Adobe Software Technology Lab

h‘ Warning: std::find() is broken!
Adobe

Sean Parent | Sr. Principal Scientist, STLab

Artwork by'Momomi Sato '/ ‘Japan

So what does reasoning about software correctness have to do with HPC?

Speed without correctness is just a faster path to failure

= Concurrency makes reasoning about correctness more difficult

'4‘ Adobe 3 © 2021 Adobe. All Rights Reserved.

“Understanding why software
fails is important, but the real
challenge is understanding why
software works.”

- Alexander Stepanov

> >

o>

> D> > > > > bs > > >

> > > > > »

> »>» > > B> B> B> B> B> > B> > > B> B> B> D> D> D

> > > > > b b > B> B> B> b D> B> D> b b D P

> >
> D
> D
> D

> > b
> D> D

> > b
> D> D

>
D>

> > > b b b
>D>Db>D>Db>D

> D
> D

> D>
> D

>D>b>D>bDDODDDDDDD

D>

> D>

> b

>>b>D>DDBDDBDDBDDDBDDBDDD
> > > > > > > D> D> D> D> D>DB>D>D> DD

>

> > > > > > > B> > b B> B> B> b > B> b D

> » > b>» > B> B> B> B> B> B> > > B> B> B> B> > D

o > > > = >

o o

>

> > > > > > o > > >

Robert W. Floyd

ASSIGNING MEANINGS TO PROGRAMS:!

l)]. UPUDIDIUII D AODTL LTWU LU 11UV1U YWIITILITU VUL Llial LuULLILICL LIVl 1D vanclil., 1 v pu’:vcub
an interpretation from being chosen arbitrarily, a condition is imposed on
each command of the program. This condition guarantees that whenever
a command is reached by way of a connection whose associated proposition
is then true, it will be left (if at all) by a connection whose associated
proposition will be true at that time. Then by induction on the number of
commands executed, one sees that if a program is entered by a connection
whose associated proposition is then true, it will be left (if at all) by a
connection whose associated proposition will be true at that time. By this
means, we may prove certain properties of programs, particularly properties
of the form: ‘“If the initial values of the program variables satisfy the
relation R,, the final values on completion will satisfy the relation R,.”
Proofs of termination are dealt with by showing that each step of a program
decreases some entity which cannot decrease indefinitely.

These modes of proof of correctness and termination are not original;
they are based on ideas of Perlis and Gorn, and may have made their
earliest appearance in an unpublished paper by Gorn. The establishment
of formal standards for proofs about programs in languages which admit 1 9 67
assignments, transfer of control, etc., and the proposal that the semantics
of a programming language may be defined independently of all processors
for that language, by establishing standards of rigor for proofs about

! This work was supported by the Advanced Research Projects Agency of the Office of
the Secretary of Defense (SD-146).

19

'&‘ Adobe 5 © 2021 Adobe. All Rights Reserved.

An Axiomatic Basis for
Computer Programming

C. A. R. HoARrg
The Queen’s Unwversity of Belfast,* Northern Ireland

F\\ Adobe

01 purely deductive reasonng. Deductive reasoning in-
volves the application of valid rules of inference to sets of
valid axioms. It is therefore desirable and interesting to
elucidate the axioms and rules of inference which underlie
our reasoning about computer programs. The exact choice
of axioms will to some extent depend on the choice of
programming language. For illustrative purposes, this
paper is confined to a very simple language, which is effec-
tively a subset of all ecurrent procedure-oriented languages.

2. Computer Arithmetic

The first requirement in valid reasoning about a pro-
gram is to know the properties of the elementary operations
which it invokes, for example, addition and multiplication
of integers. Unfortunately, in several respects computer
arithmetic is not the same as the arithmetic familiar to
mathematicians, and it is necessary to exercise some care
in selecting an appropriate set of axioms. For example, the
axioms displayed in Table I are rather a small selection
of axioms relevant to integers. From this incomplete set

* Department of Computer Science

276 Communications of the ACM

It is interesting to note that the different systems satisfy-
ing axioms Al to A9 may be rigorously distinguished from
each other by choosing a particular one of a set of mutually
exclusive supplementary axioms. For example, infinite
arithmetic satisfies the axiom:

Al10; —3xVy (y < z),
where all finite arithmetics satisfy:
Al10, Vz (x < max)

where “max” denotes the largest integer represented.

Similarly, the three treatments of overflow may be
distinguished by a choice of one of the following axioms
relating to the value of max + 1:

Alls =3z (xr = max + 1) (strict interpretation)

Ally, max + 1 = max (firm boundary)
Ally max + 1 =0 (modulo arithmetic)

Having selected one of these axioms, it is possible to
use it in deducing the properties of programs; however,

VYolume 12 / Number 10 / October, 1969

1969

© 2021 Adobe. All Rights Reserved.

Reasoning About Code: Hoare Logic

Hoare logic, also known as Floyd-Hoare logic, describes computation statements as a Hoare triple

P{O}R.

Where P is a precondition, Q is an operation, and R is the postcondition.
Statements are combined with rules for assignment, consequence, composition, and iteration.

Given a sequence of statements and assuming an initial precondition, if we can show that the

subsequent postconditions guarantee subsequent preconditions are satisfied, then the program is
correct.

'4‘ Adobe 7 © 2021 Adobe. All Rights Reserved.

Math Notation Glossary

for all (universal quantifier)

there exists (existential quantifier)

N
such that
Not

iImplies
i
logical and

(if and only if)

logical or

'4‘ Adobe 8 © 2021 Adobe. All Rights Reserved.

Properties of Addition for Integers (Z)

Va,b,c € / (a+b)+c=a+ (b+ c) (associative)
Va,b € 7 a+b=b+a (cummutative)
30 2> Va0 € Z a+0=a (additive identity)
Vae Z,4(-a) € Z > a+ (-a) =0 (additive inverse)

'4‘ Adobe 9 © 2021 Adobe. All Rights Reserved.

/Z % int

When signed integers overflow or underflow the behavior is undefined.

In Hoare logic this could be expressed as an additional axiom:
—d(x € int) D (x > max;,,)
L eading to a Hoare-triple:

(a+ b <max,){intn=3a+b; }(n < max;,)

"Even the characterization of integer arithmetic is far from complete’
- C.ARR. Hoare, An Axiomatic Basis for Computer Programming

h‘ Adobe 10 © 2021 Adobe. All Rights Reserved.

N NN
(-

NS

14

403'

()

= /-,

-

17
’

18
19

—

auto nextedement(input_iterator auto p) {
-\»return xnext(p);

5. Entered call from 'main’

9. Undefined or garbage value returned to caller o

3 3. Returning trom 'beg...

} n/

int main() { 6. Calling 'next<int *>'
int al[]{9}; 8. Returning from 'next<int *>'
return next_element(begin(a));

}

F\\ Adobe 1

© 2021 Adobe. All Rights Reserved.

- Applying “Design by
Contract”

Bertrand Meyer

Interactive Software Engineering

e The cornerstone of object-oriented technology is reuse. For reusable compo-
nents. which may be used in thousands of different applications, the potential
consequences of incorrect behavior are even more serious than for apphcation-
specific developments.,

¢ Proponents of object-oriented methods make strong claims about their bene-

m ficial effect on software quality. Reliability is certainly a central component of
' any reasonable definition of quality as apphed o sofltware.
e The object-oriented approach, based on the theory of abstract data types,

Rellablllty 1S even more provides a particularly appropriate framework for discussing and enforcing
important in object- reliability.
oriented pr ogramming The pragmatic techniques presented in this article, while certainly not providing

infallible ways to guarantee reliability, may help considerably toward this goal.
They rely on the theory of design by contract. which underlies the design of the
article ShOWS how to Eiffel analysis, design, and programming language' and of the supporting libranies,

[[]
v from which a number of examples will be drawn, 1 9 92 O rl I n a l 1 9 8 6
reduce bugs by bulldmg The contributions of the work reported below include
software components e a coherent set of methodological principles helping to produce correct and
on the basis of carefully robustsoliware:

. ® a systematic approach to the delicate problem of how to deal with abnormal
desngned contracts. cases. leading 1o a simple and powerful exception-handling mechanism: and

than elsewhere. This

“0 U R NN ORI L O AN Y 3 COMP[:TER

'\‘ Adobe 12 © 2021 Adobe. All Rights Reserved.

Design by Contract

Preconditions and postconditions are asserted in code, in the interface

set minute (m: INTEGER)
-— Set the minute from m'.
require
valid argument for minute: 0 <= m and m <= 59
ensure
minute set: minute
end

m

'4‘ Adobe 13 © 2021 Adobe. All Rights Reserved.

Design by Contract

Class invariants define postconditions for all (public) operations on a class

invariant
minute valid: 0 <= minute and minute <= 59

By extension, class invariants define a guarantee for any operation taking an instance of the class as an
argument

'4‘ Adobe 14 © 2021 Adobe. All Rights Reserved.

Implementation Limitations of Contracts

Assertions must be expressible in code

Complexity of runtime checked assertions is limited
= A linear time assertion on a constant operation can transform code from O(n) to O(n ¢ m)

Cannot validate universal quantifiers, V, or existential quantifiers, 4 without a logical verification system

'4‘ Adobe 15 © 2021 Adobe. All Rights Reserved.

Key Contributions of Desigh by Contract

Simplifies formal methods by inverting the process to top-down

= Given a precondition, it is simpler to prove a function satisfies a postcondition than to derive a
preconditions and postconditions from a composition of operations

The ideas of design by contract are not limited to implementation constraints

= Assertions that cannot be expressed or validated directly in code can be expressed in
documentation

Makes formal methods practical for every programmer

'4‘ Adobe 16 © 2021 Adobe. All Rights Reserved.

“With a sufficient number of users of
an API, it does not matter what you
promise in the contract: all
observable behaviors of your system
will be depended on by somebody.”

- Hyrum Wright

> »>» > > B> B> B> B> B> > B> > > B> B> B> D> D> D

> > > > > b b > B> B> B> b D> B> D> b b D P

> >
> D
> D
> D

> > b
> D> D

> > b
> D> D

> > D
> D> D

> > b
> D> D

> > b
> D> D

> D>
> D

>D>DD>DD>DDDDDDDBDDBDDD
>D>b>D>DbDD>DDBDDDDDDBDDDDDD
> > > 5555555555555 5

> b

>

> > > > > > > B> > b B> B> B> b > B> b D

> » > b>» > B> B> B> B> B> B> > > B> B> B> B> > D

Remove the first odd number (attempt 1):

vector a{0, 1, 2, 3, 4, 5};
// Remove the first odd number

auto p = remove_if(begin(a), end(a), [odd_count{@}](int x) mutable {
return (x & 1) && (++odd count == 1);
1)

a.erase(p, end(a));
display(a);

{o, 2,4, 5}
{09, 2, 3, 4, 5}

F\\ Adobe 18 © 2021 Adobe. All Rights Reserved.

Possible Implementation of std::remove_if()

template <class F, class P>
auto remove if(F f, F 1, P pred) {
f = find_if(f, 1, pred); // <— pred is passed by value

if (f == 1) return f;

for (auto p = next(f); p != 1; ++p) {
if (!pred(xp)) *xf++ = move(xp);
}

return f:

F\\ Adobe 19 © 2021 Adobe. All Rights Reserved.

Remove the first odd number (attempt 2):

vector a{0, 1, 2, 3, 4, 5};

// Remove the first odd number

int odd count{0};

auto p = remove_if(begin(a), end(a), [&odd _count](int x) {
return (x & 1) & (++odd count == 1);

});

a.erase(p, end(a));
display(a);

{09, 2, 3, 4, 5}

F\\ Adobe 20 © 2021 Adobe. All Rights Reserved.

Standard Requirement for Unary Predicate

"Given a glvalue u of type (possibly congt) T that designates the same object as *first, pred(u) shall
be a valid expression that is equal to pred(*first).

pred() is a required to be a reqgular function.

But Hyrum's Law...

'4‘ Adobe 21 © 2021 Adobe. All Rights Reserved.

Safety & Correctness

An operation is safe if it cannot lead to undefined behavior
= directly or indirectly
= even if the operation preconditions are violated

an unsafe operation may lead to undefined behavior if preconditions are violated
= either directly or during subsequent operations, safe or not

Code that violates preconditions is incorrect

Safety is about the possible consequences of having a bug

'4‘ Adobe 22 © 2021 Adobe. All Rights Reserved.

Requirements For Correctness

A correctly implemented operation guarantees that:
* |f preconditions are satisfied
= The operation will either succeed, result matches post conditions
= Or report failure, return an error, throw an exception, set errno

= Any objects being mutated by the operation must still satisty invariants

'4‘ Adobe 23 © 2021 Adobe. All Rights Reserved.

Requirements For Correctness

f a precondition is not satisfied
= If the operation is safe
* The result is unspecified which could include:
= failure (return an error, throw an exception)
= trapping (calling terminate)

* leaving any object being mutated by the operation in an unspecified, possibly invalid, state

'4‘ Adobe 24 © 2021 Adobe. All Rights Reserved.

Requirements For Correctness

f 3 precondition is not satisfied
= |f the operation is unsafe
= The behavior is undefined
* |f the operation returns, any subsequent operation is also undefined

= Undefined behavior may including writing to arbitrary memory, executing arbitrary functions,
damaging the hardware, launching the missile, crashing the car... anything

= Compilers are free to assume undefined behavior does not happen

'4‘ Adobe 25 © 2021 Adobe. All Rights Reserved.

Undefined Behavior

#include <iostream>

void function(const int& x) {

1f (&x == nullptr) std::cout << “null-reference\n";
else std::cout << “valid\n";

}

int main() {
intx p = nullptr;
function(xp);

valid

F\\ Adobe 26 © 2021 Adobe. All Rights Reserved.

https://godbolt.org/z/n6srd9MMG

Weakening Preconditions

An implementation may do something specifiable and safe when a precondition is violated
= |tis tempting to weaken preconditions and specity those cases

= Because Hyrum...

But should we?

'4‘ Adobe 27 © 2021 Adobe. All Rights Reserved.

“It's complicated.”

- Kate Gregory

28

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

Ly
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

> > >
> D> D
> > D
> D> D

>

A

> D

> > b b

> > b b b

A

> D>

D>

A

> D

> D> D> D

A

> D> b b

A
A
A
A
A
A
A
A
A
A
A
A
A

A A

A

A

D>
>DD>D>b>DbD>DDDDDDDBDBDDDDDDD

>

> > D

> > > > > D> B> D> DB D> DB DD D> DD
> > > > > > > B> > b B> B> B> b > B> b D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

Safety, Correctness, Strong & Weak Preconditions

Undefined behavior is always incorrect
» |f undefined behavior can be asserted (UBSan), you have strong safety
= Otherwise undefined behavior is unsafe
Unspecified is safe
= May mask correctness issues unless an allowed behavior is to trap
Specified behavior (weakening preconditions)

= May mask correctness issues

'4‘ Adobe 29 © 2021 Adobe. All Rights Reserved.

Undefined Behavior Can Catch Defects

template <class F>
void bresenham_line(int dx, int dy, F out) {
for (aint x =0, vy =0, a=dy / 2; x != dx; ++x) {
out(x, vy);

a += dy; 4 Signed integer overflow: 1073741823 + 2147483647 cannot be represented in type 'int’
if (!(a < dx)) {

++yi
a -= dx;

'&‘ Adobe 30 © 2021 Adobe. All Rights Reserved.

Strong Preconditions

Pros
= Provide flexibility of implementation
= (Can ascribe meaning and intent to an operation
= Simplity requirements and reasoning about code
Cons
= Limit clever uses that exploit otherwise defined behavior
= Allow for variance in behavior between implementations

= Open an opportunity for Hyrum's law

F\\ Adobe 31

© 2021 Adobe. All Rights Reserved.

F\\ Adobe

Generic Programming”

David R. Musser! Alexander A. Stepanov
Rensselaer Polytechnic Institute Hewlett-Packard Laboratories
Computer Science Department Software Technology Laboratory

Amos Eaton Hall Post Office Box 10490
Troy, New York 12180 Palo Alto, California 943030969

Abstract

Generic programming centers around the idea of abstracting from concrete, ef-
ficient algorithms to obtain generic algorithms that can be combined with different
data representations to produce a wide variety of useful software. For example, a
class of generic sorting algorithms can be defined which work with finite sequences
but which can be instantiated in different ways to produce algorithms working on
arrays or linked lists.

Four kinds of abstraction—data, algorithmic, structural, and representational—
are discussed, with examples of their use in building an Ada library of software
components. The main topic discussed is generic algorithms and an approach to
their formal specification and verification, with illustration in terms of a partitioning
algorithm such as is used in the quicksort algorithm. It is argued that generically
programmed software component libraries offer important advantages for achieving
software productivity and reliability.

*This paper was presented at the First International Joint Conference of ISSAC-88 and AAECC-6,
Rome, Italy, July 4-8, 1988. (ISSAC stands for International Symposium on Symbolic and Algebraic
Computation and AAECC for Applied Algebra, Algebraic Algorithms, and Error Correcting Codes). It
was published in Lecture Notes in Computer Science 358, Springer-Verlag, 1989, pp. 13-25.

TThe first author’s work was sponsored in part through a subcontract from Computational Logic,
Inc., which was sponsored in turn by the Defense Advanced Research Projects Agency, ARPA order
9151. The views and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency, the U.S. Government, or Computational Logic., Inc.

32

1989

© 2021 Adobe. All Rights Reserved.

Fundamentals of Generic Programming

James C. Dehnert and Alexander Stepanov

Silicon Graphics, Inc.
dehnertj@acm.org, stepanov@ attlabs.att.com

Copyright © Springer-Verlag. Appears in Lecture Notes in Computer Science 1 9 92
(LNCS) volume 1766. See http://www.springer.de/comp/Incs/index.html .

F\\ Adobe 33 © 2021 Adobe. All Rights Reserved.

“We call the set of axioms
satisfied by a data type and a set
of operations on it a concept.”
- Fundamentals of Generic
Programming

> >

o>

> D> > > > > bs > > >

> > > > > »

> »>» > > B> B> B> B> B> > B> > > B> B> B> D> D> D

> > > > > b b > B> B> B> b D> B> D> b b D P

> >
> D
> D
> D

> > b
> D> D

> > b
> D> D

>
D>

> > > b b b
>D>Db>D>Db>D

> D
> D

> D>
> D

>D>b>D>bDDODDDDDDD

D>

> D>

> b

>>b>D>DDBDDBDDBDDDBDDBDDD
> > > > > > > D> D> D> D> D>DB>D>D> DD

>

> > > > > > > B> > b B> B> B> b > B> b D

> » > b>» > B> B> B> B> B> B> > > B> B> B> B> > D

o > > > = >

o o

>

> > > > > > o > > >

Concepts

Concepts are a named set of requirements
= axioms specifying the semantics of operations (semantic requirements)
= operation preconditions and postconditions (contractual requirements)

= operation complexity (complexity requirements)

F\\ Adobe 35 © 2021 Adobe. All Rights Reserved.

C++20 Concepts

In C++420, concepts associate a documented set of semantic, contractual, and complexity requirements
with a set of named operations (syntactic requirements)

= Similar to how natural language works, we associate meaning with words
= Example: equality_comparable requires
« operator==is defined and the result is convertible to bool (syntactic)

» operator==is an equivalence relation (semantic)

« The arguments to operator== are within the domain of the operation (contractual)

» operator== executes in time proportional to the area of the object (complexity)

F\\ Adobe 36 © 2021 Adobe. All Rights Reserved.

Concepts

Associate semantics & complexity with syntax

Defines a component that will work for any type satistying the requirements
Assign meaning to an unbounded set of operations

An argument is required to satisfy a concept

A data type or operation may guarantee it is able to satisty a concept

h‘ Adobe 37 © 2021 Adobe. All Rights Reserved.

Requirements vs Guarantees

A requirement applies to the parameters of a (parameterized) type or operation
A guarantee applies to an instance of an object, or objects:

= Asserting such an instance satisfies a requirement (or models a concept)

F\\ Adobe 38 © 2021 Adobe. All Rights Reserved.

Requirements

distance(d, 1) requires:
« fand 1satisty Inputlterators
= preincrement, ++i, postincrement, (void)i++, and postincrement and dereference, *i++
= precondition: i I=1
» fand 1satisty Triviallterator
= fand1satisty Assignable, EqualityComparable, DefaultConstructible
= EqualityComparable precondition: arguments are in the domain of ==

= precondition: [£, 1) is a valid range

F\\ Adobe 39 © 2021 Adobe. All Rights Reserved.

Requirements

Naming the set of requirements is a significant simplification
The concept std::input_iterator encapsulates a complex set of syntactic and semantic requirements

Only the syntactic requirements are enforced by the compiler but analyzers and sanitizers can validate
some of the semantic requirements

Concepts in the standard are requirements on the parameters of the library components

= The standard types are often described as guaranteeing they satistying some concepts

h‘ Adobe 40 © 2021 Adobe. All Rights Reserved.

Concepts

Named requirements, or concepts, are distilled from:
 Aset of related components (algorithms, containers, types...)

= A set of common models

They create a simple way to match data types to components and know the result will work correctly

= For a specific component, requirements may be stronger than those required by the implementation

The purpose is not to specify the implementation but to specify the meaning

h‘ Adobe 41 © 2021 Adobe. All Rights Reserved.

std::find(first, last, value)

42

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

Ly
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

> > >
> D> D
> > D
> D> D

>

A

> D

> > b b

> > b b b

A

> D>

D>

A

> D

> D> D> D

A

> D> b b

A
A
A
A
A
A
A
A
A
A
A
A
A

A A

A

A

D>
>DD>D>b>DbD>DDDDDDDBDBDDDDDDD

>

> > D

> > > > > D> B> D> DB D> DB DD D> DD
> > > > > > > B> > b B> B> B> b > B> b D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

Meaning of Equality

Two objects are equal iff they represent the same entity (i.e, have the same value)

Equality is an equivalence relation

Va a=a (reflexive)
Va,b a=b<< b=a (symmetric)
Va,b,c (a=bANb=c)=— a=c (transitive)
Consistent with other operations on the type

Va,b b—>a— a=>b (equivalence of copies)
Va,b aLbANb<La<— a=>b (excluded middle)

F\\ Adobe 43

© 2021 Adobe. All Rights Reserved.

SGI STL std::find() documentation

template<class Inputlterator, class EgqualityComparable>
InputIterator find(Inputlterator first, Inputlterator last,
const EqualityComparable& wvalue);

Requirements on types

EqualityComparable 1s a model of EqualityComparable.
Inputlterator 1s a model of Inputlterator.
Equality 1s defined between objects of type EqualityComparable and objects of Inputlterator's value type.

Preconditions
[first, last) 1sa valid range.
Complexity

Linear: at most last - first comparisons for equality.

'4‘ Adobe 44 © 2021 Adobe. All Rights Reserved.

https://www.boost.org/sgi/stl/InputIterator.html
https://www.boost.org/sgi/stl/EqualityComparable.html
https://www.boost.org/sgi/stl/EqualityComparable.html
https://www.boost.org/sgi/stl/InputIterator.html

SGI STL EqualityComparable documentation

Expression semantics

Name | Expression Precondition
Equality |x == vy x and y are in the domain of ==
Invariants
Identity &xX == &y implies x ==y
Reflexivity |x == x
Symmetry |[x == yimpliesy ==
Transitivity |x == yandy == z impliesx == z

F\\ Adobe

45

© 2021 Adobe. All Rights Reserved.

C++20 std::find() specification (25.6.5)

template<class Inputlterator, class T>
constexpr Inputlterator find(Inputlterator first, Inputlterator last,
const T& wvalue);

[et E be:
*1 == wvalue for find;

Returns: The first iterator i 1n the range [first, last) for which £ 1s true. Returns 1last if no
such 1terator 1s found.

'4‘ Adobe 46 © 2021 Adobe. All Rights Reserved.

https://eel.is/c++draft/alg.find#2.sentence-1
https://eel.is/c++draft/alg.find#2.sentence-2

C++20 Cpp17EqualityComparable requirements

Table 27: Cppl7EqualityComparable requirements [tab:cppl7.equalitycomparable]

Expression Return type Requirement

a == convertible to bool == |s an equivalence relation, that is, it has the
following properties:
— For all 3, a == a.
— Ifa==Db,then b ==a.
— Ifa==band b==c, thena==c.

'4‘ Adobe 47 © 2021 Adobe. All Rights Reserved.

http://www.eel.is/c++draft/utility.arg.requirements#tab:cpp17.equalitycomparable
http://www.eel.is/c++draft/tab:cpp17.equalitycomparable

NaN refresher - a value that is not equality comparable

nan(“”) is typically generated by 0.0/0.0
nan(“”) == nan(“”) is false (irreflexive)

nan(“”) does not satisfy the requirements of EqualityComparable or Cpp17EqualityComparable

'4‘ Adobe 48 © 2021 Adobe. All Rights Reserved.

Find Without Equality

double a[l{ 0.8, 7.0, nan(""), 3.0, 2.4 };
auto p = find(begin(a), end(a), nan(""));
if (p == end(a)) {

cout << "not-found\n':
1 else {

cout << "found: " << xp << "\n'";
+

not-found

F\\ Adobe © 2021 Adobe. All Rights Reserved.

Find Without Equality

double a[l{ 0.8, 7.0, nan(""), 3.0, 2.4 };
auto p = find(begin(a), end(a), 3.0);
if (p == end(a)) {

cout << "not-found\n':
1 else {

cout << "found: " << xp << "\n'";
+

found: 3

F\\ Adobe © 2021 Adobe. All Rights Reserved.

A Subtle Change...

If std::find() required Cppl7EqualityComparable, the following code would be undefined behavior:

double a[] { 0.8, 7.0, 42.3, 3.0, 2.4 };

auto p = find(begin(a), end(a), 3.0);

The above code is well defined with the SGI definition of EqualityComparable

'4‘ Adobe 51 © 2021 Adobe. All Rights Reserved.

SGI STL EqualityComparable documentation

Expression semantics

Name | Expression Precondition
Equality |x == vy x and y are in the domain of ==
Invariants
Identity &xX == &y implies x ==y
Reflexivity |x == x
Symmetry |[x == yimpliesy ==
Transitivity |x == yandy == z impliesx == z

F\\ Adobe

52

© 2021 Adobe. All Rights Reserved.

SGI STL EqualityComparable documentation

F\\ Adobe

Precondition

x and y are 1n the domain of ==

53

© 2021 Adobe. All Rights Reserved.

C++20 Cpp17EqualityComparable requirements

Table 27: Cppl7EqualityComparable requirements [tab:cppl7.equalitycomparable]

Expression Return type Requirement

a == convertible to bool == |s an equivalence relation, that is, it has the
following properties:
— Forall 3, a == a.
— Ifa==Db,then b ==a.
— Ifa==bandb==c, thena==c.

'4‘ Adobe 54 © 2021 Adobe. All Rights Reserved.

http://www.eel.is/c++draft/utility.arg.requirements#tab:cpp17.equalitycomparable
http://www.eel.is/c++draft/tab:cpp17.equalitycomparable

The term domain of the operation is used in the ordinary
mathematical sense to denote the set of values over which an
operation is (required to be) defined. This set can change over time.
Each component may place additional requirements on the domain
of an operation. These requirements can be inferred from the uses
that a component makes of the operation and are generally
constrained to those values accessible through the operation’'s
arguments.

FA\ Adobe 55 © 2021 Adobe . All Rights Reserved |

Domain of the Operation

The domain of an operation is not the types of the arguments
For a type, 1, to satisfy a requirement, P:

Va P(a)
I must guarantee that

da € T 5 P(a)
double and float satisty EqualityComparable
» So long as nan is not in the set being compared

» The absence of nan in the sequence for find() is a precondition of EqualityComparable

F\\ Adobe 56 © 2021 Adobe. All Rights Reserved.

Weaker Preconditions

std::find_if() will return the first element for which a predicate is true

template <class I, class T>
I find(I first, I last, const T& value) {

return find if(first, last, [&](const auto& e) {
return value == e;
) ;

}

The additional requirements comes with the use of operator==

Otherwise the meaning of find and the meaning of equality is weakened

= QOur ability to reason about code is weakened

'4‘ Adobe 57 © 2021 Adobe. All Rights Reserved.

Weaker Preconditions

std::find_if() will return the first element for which a predicate is true

template <class I, class T>
I find(I first, I last, const T& value) {

return find if(first, last, [&](const auto& e) {
return e == value;
) ;

}

The additional requirements comes with the use of operator==

Otherwise the meaning of find and the meaning of equality is weakened

= QOur ability to reason about code is weakened

F\\ Adobe 58 © 2021 Adobe. All Rights Reserved.

std::find() is broken in C++20

std::find () doesn't require that there exist any equality comparable values in T
» Cppl7EqualityComparable is broken because the definition implies operator==is total

std::find() doesn't guarantee that it finds value, even if value exists in the sequence

he meaning of std::find () is reduced to works-as-implemented
Fortunately, it is trivial to show that iff operator== models EqualityComparable

= And all values in the sequence and the value being sought are in the domain of ==

* Then std::find () will find

F\\ Adobe 59 © 2021 Adobe. All Rights Reserved.

“Understanding why software
fails is important, but the real
challenge is understanding why
software works.”

- Alexander Stepanov

> >

o>

> D> > > > > bs > > >

> > > > > »

> »>» > > B> B> B> B> B> > B> > > B> B> B> D> D> D

> > > > > b b > B> B> B> b D> B> D> b b D P

> >
> D
> D
> D

> > b
> D> D

> > b
> D> D

>
D>

> > > b b b
>D>Db>D>Db>D

> D
> D

> D>
> D

>D>b>D>bDDODDDDDDD

D>

> D>

> b

>>b>D>DDBDDBDDBDDDBDDBDDD
> > > > > > > D> D> D> D> D>DB>D>D> DD

>

> > > > > > > B> > b B> B> B> b > B> b D

> » > b>» > B> B> B> B> B> B> > > B> B> B> B> > D

o > > > = >

o o

>

> > > > > > o > > >

“The gap between code that fails and
code that is correct is vast. Within it
lies all the code that happens-to-
work. Strive to write correct code and

you will write better code.”
- Me, This Talk

> »>» > > B> B> B> B> B> > B> > > B> B> B> D> D> D

> > > > > b b > B> B> B> b D> B> D> b b D P

> >

> D> D

> > D

> D> D
>

D>

> > b
> D> D

> > b
> D> D

> D
> D

> > b
> D> D

> > b
> D> D

> D>
> D

>D>DD>DD>DDDDDDDDDDD
>D>b>D>DbDDBDDDDDDBDDDDDDD
> > > 555555555555 05>

>

>

>

> > > > > > > B> > b B> B> B> b > B> b D

> » > b>» > B> B> B> B> B> B> > > B> B> B> B> > D

0N

Adobe

adobe.com/careers
bit.ly/adobecpp

A> AD>D AD>DAD>D AD>D AD>D AD> AD

> V > V > vV > V > V > V > V b V
A > AD> AD> AD>DAD>D AD>D AD> AD

> V > V > V > V > V > V >V b V
A > AD> AD> AD>P AD>DAD>D AD AD

> V > V > V > V > V > V > V D>V

https://adobe.com/careers
https://cppatadobe.splashthat.com/

About the artist

Momomi Sato

Tokyo-based artist Momomi Sato meticulously
applies paint using toothpicks to create fanciful,
pointillistic works of animals, patterns, and other
colorful subjects. With a style that ranges from
abstract to kawaii, Sato’s paintings are as charming as
they are beautiful. For this piece, a train ride
prompted an exploration of systems that influence
daily life. As she stared intently at the pattern on the
seats, the lines and shapes seemed to move and draw
Sato into another dimension. She recreated the
sensation by hand with acrylic paint on canvas.

. D 2L 2 s QGQDGO’_‘ » » & S5 M Y & ® & 6 g))
- o4 “AKAV‘) 3 / e y »J. 5
C & Y A IS
) 5 & é) €9 ¢ e : | ~_ . 9 o~y
- \ A) l.',,': ' . ._.1 . <y
7
-~ ¢ N
[%) i - ¢
.’ N t . » m oD o o A
o b L A \
y / a

g o - e
’ \ 5
-
R { ® © R
&y o ~
&
“

] e ¢ / 4 Y » »"_)
)) y P ‘\‘ B > o . &
Q =0
~ o ™ 4
&£ 4
. — -
" : 0% QQC’
~) - 4 Do P &
, 3 &3 §a45e
- < > ;)
Lo) | P g b < (.3:70
' 3 s W > 89es0®
3 ' : ' ~ SHERO
~ k o8 ©co
' ~ e .
\ .
s i o 2 r
0.0 y P | L & A 3
»\ - T 4‘- SOV A '_“1
4 . = ~Y (£ 11
? -~ ¢ o
- \ N ’)
N \ .\‘ =N) 4
) b .‘ .. [N v \' -~ ‘. -
-~ K SR W A A 1
2 y ! 2% e
50 (3)
. \ / ..'\-‘ y
\ . Syl e =
2 _ Yy O -
N —
A 8 e 2 y
% ANE AL, T
. e < e 4 : ¥ 18
8 A 5 4 - ‘ : L AL
: N \ . a Ve ~ <) b o
- » D 8 4 —~ ¢
- o ~y f . " -
-) v 5= :
> N [2\)4 ~ @R . “y
2N T p 9o &N c)
e) = 2 - < . <
sy %
N TTI YL) 3 : -
) - ,: \K)O 8 ﬁ'y'v A - 4 '
N B N Fay . -
ey .\-\@\).@C(;/QQO ¥ Y Y) A)) o ;
oo - R - - . y :
. y ' 7 \
: a® ‘e e T Y in y > W)
. - (¢~)) & ¢ \ = S) 4
< S \\'\ - \ N . A ~) § Y <
- CAL< | S)
. o V- o~
3 \ 3 B - 2% < 3
S { - &)) A N -
~ 3 1y PNt " pe
y s SO D R RN
- w) J PN A { pa
v~ . D o) .) © 5
i & é B \ ‘ - 3 ! “ o
A &% \ faé v D
- ra - -
(AN R P) Y >

b ™, - > p * = ’

& a” 5) ~ L e ~ -

\ B 3 - < YY) 't 4+ & -

p g B - r‘) v s () >l .

W\ Y " { - , Ny &
b A »
€ N e o~ A 1

L o L »” o ig.: “:'Q‘.:E S° e @ .m Ll ["E's";'WE‘NM’ ’ﬂ.‘ Km ’.'8 33883" f:'«.‘o.o.d“
S1ips = S o N ‘ g
PreeR ?' & P gn 3

19
T i

N TIIRY

288%s

N .

' m @ : “.J m :" 095000
538 mEas om ml
$ 3730 7§73} AT O LT XX Tl 4 b DIP 70T N L 5 Patd 1 e Rd L T { L T

e

2 2

gz
s RGeSl
el i H

DX LRI T RS A B

8
AYIEE

% P e S
EXI/R N

i

(665 I0RE

s 8

LAY
4
»

LA I J{ﬁﬁg = g g’% -gg, ? : ?:‘m'fnmsm::.wmzmlfiﬁ&‘mm«wmmxg 'n.wia‘g“ SYATeNY,
O i .: § § %3; "'",‘"gé - 2 .'2!331::-9.'9:}.%&:;?.;::’%”%: 77 PRty p .. .;i?..!.ﬁmamm:
FAe S B3 gz&: i R gf‘g g“:cgugmva&s\\\i..;ﬂ:.‘?% ifiagéfgmsmmumamm-:-:*mwm:
T YIITE COPTRRTRonY, * g = 4 ' {3 2 &L D E Y& D

Seig
58

3
Eosonnsgons B SRS
$29008 IVINETS ..-.'.v.'.csm%a

e
:

s

cFeaibie
T,

22

A

G430 RATHSITINE 558802,

1] LA

:

X

82

IR NV A A RNSS

ISR TNTREEP20OV IS,

WAL IA03201050%%

sepail:

{
A5
tevs

FTL7 i Y 8 LRI

L
L4

; ‘ fé?{ Y31

.:E

41 ;

8.'.'3.?.’ igvugagm

'80;

BN TSI

5%

e
L

I@!ﬂ

9
i
SUYAYISP

AN AR A
$PAVIIRLUERPI53393 745

$
»

énmummuxswmmmﬁ

0o

S
Se1062

’0
B LIIVENI I AI5H;

§8ogs2e0883853208200
o0
-.!;“&u
2

&R 8 .5%' i B !}3%?!'3{:‘83.%5&%58“{-3::9 EROEIPETSE
4 a 0328 "

3

Do
0.'

idd
388

b
588
68
£

o &
e
SR 1]

o d
PLEL
IIET ®°® "9 @

£8
) 233 28

$8o%

83s

8

8228

'3 ’ %
g%wz:mmmm
o v 3
33385 roncesesas:
§‘» "?2'5‘33?“‘”‘“”“

&8

gmmzr.'.. so s 8hlenves

gy

PRN%S

eP2.%

cio

s | SHov00 PHOOP
228853 ::.';:.ttx.cc..‘!_:r.c,m...z
% .

‘s

R UL e T

2288
k114
280
8

i

14711348

