Language: Fragmentation of
adobe Machine Architecture

Sean Parent | Sr. Principal Scientist
Adobe Software Technology Lab

Mario Wolczko | Oracle Labs

Artwork by UV Zhu / China

Desktop Applications - Recent History

- Macintosh

- 68K, single-core

- PPC, single-core

- Intel, multi-core, SIMD, OpenGL/CL
- Windows

- Intel, single-core

- Intel, multi-core, SIMD, OpenGL/CL

'4‘ Adobe 2 ©2021 Adobe. All Rights Reserved.

Two Key Events

- 2005 we hit the physical limits of Moore's Law under current technology

-+ 2007 the iPhone is introduced

'4‘ Adobe 3 ©2021 Adobe. All Rights Reserved.

2009 Projected Processor Characteristics

transistors_
107 '!
10° ;
5 |
10 % thread performance
' -------------
S 10 ‘ clock frequency
g L e R T T Frepee)
3
s 10 :
'i : power (watts)
10° ‘ B ey o C L
' # cores
10}
i
'|

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030

The future of computing beyond Moore’s Law, Volume: 378, Issue: 2166, DOL: (10.1098/rst2.2019.0061)

FA\ Adobe

©2021 Adobe. All Rights Reserved.

How are we doing?

Tansi~Nl O

= aat * **| Transistors
"l a - (thousands)
W - Single-Thread
_%‘"‘9 |'Béitbimance
=T r X,
Y ClocT gséauce'm-[X107)
= rre'c]u?:nZY(MHz)
S
: o - EIR o
5 -‘ T VuTt 5y - ®
L()(C\
Number of

Logical Cores

10
970 1975 KRR 1085 quED 1995 BEn 2005 Zy(g 2015 208002025 2040
Year After Moore's Law: How Will We Know How Much Faster Computers Can Go?

Scott Fulton, Data Center Knowledge, Dec 21, 2020

FA\ Adobe 5 ©2021 Adobe. All Rights Reserved.

https://www.datacenterknowledge.com/supercomputers/after-moore-s-law-how-will-we-know-how-much-faster-computers-can-go

Desktop Compute Power (8-core 3.5GHz Sandy Bridge + AMD Radeon 6950)

OpenGL
OpenCL
CUDA
Direct Compute
C++ AMP
DirectX

Intrinsics
Auto-vectorization
OpenCL

0 750 1500 2250 C10]0]0

GPU Vectorization ™ Multi-thread Scalar (GFlops)

© 2014 Adobe Systems Incorporated. All Rights Reserved. 6 "‘

Adobe

Platform Expansion

- Mobile

- iPhone fundamentally changed mobile devices
- Web

- Content Ubiquity is expected

- Tablets

- Larger "phones” succeeded where smaller desktops failed

'4‘ Adobe 7 ©2021 Adobe. All Rights Reserved.

Platform Expansion

- In 2012 | gave an internal presentation at Adobe on content ubiquity

- Broadband was available to th majority of the popultion in the developed countries
- Soon will be true worldwide

- Noted capabilities of mobile devices
- Increased by > 8x

- Because content ubiquity is becoming a base expectation, not providing it will kill a3 product

'4‘ Adobe 8 ©2021 Adobe. All Rights Reserved.

Platform Expansion

'4‘ Adobe 9 ©2021 Adobe. All Rights Reserved.

Platform Fragmentation

+ MacOS

- Win32 & UXP

- 10S and iPadOS
- Android

- Linux (server)

- W3C

'4‘ Adobe 10 ©2021 Adobe. All Rights Reserved.

Instruction Set Fragmentation

. Intel (AVX SIMD)
. ARM (Neon SIMD)
. WASM (WASM SIMD)

- Currently 32 bit address space

'4‘ Adobe m ©2021 Adobe. All Rights Reserved.

GPU Platform Fragmentation

- Metal (Apple)

- DX12 (Microsoft)

- Vulcan (Open Standard, Android, Linux)
. CUDA (NVIDIA)

- WebGPU (Browsers)

'4‘ Adobe 12 ©2021 Adobe. All Rights Reserved.

Amdahl’s Law

FA\ Adobe

Performance

16

15

14

13

12

11

10

P=100%

6 ////
. g
- P=80%
4
3 / /
2 //
1 é 7 8 9 10 11 12 13 14 15 16
Processors
13

©2021 Adobe. All Rights Reserved.

Hardware to Fight Amdahl’s Law

- NUMA
- DMA to discrete GPU
- Unified Memory (Apple's M1 chips)
- “The unified memory requires a very different approach to that on Windows with discrete GPUs!’

- Optane?

'4‘ Adobe 14 ©2021 Adobe. All Rights Reserved.

Hardware to Manage Power

- Thermal Throttling
- Heterogeneous Cores

- Discrete / Integrated GPU Switching

'4‘ Adobe 15 ©2021 Adobe. All Rights Reserved.

Languages Are Not Keeping Up

- We are struggling to find models to reason about concurrent systems
- CSP, Actors, Functional, ...
- Safer languages have higher overhead

- But unsafe languages are harder to get correct

. My estimate is we are leaving 23 to 2° times performance on the table

'4‘ Adobe 16 ©2021 Adobe. All Rights Reserved.

Operation Costs are Not Reflected In Code

FA\ Adobe

Operation Cost in CPU Cycles

“Simple” register-register op (ADD,OR,etc.)
Memory write

Bypass delay: switch between
integer and floating-point units
“Right” branch of “if”
Floating-point/vector addition
Multiplication (integer/float/vector)
Return error and check

L1 read

TLB miss

L2 read

“Wrong” branch of “if” (branch misprediction)

Floating-point division

128-bit vector division

Atomics/CAS

C function direct call

Integer division

C function indirect call

C++ virtual function call

L3 read

Main RAM read

NUMA: different-socket atomics/CAS
(guesstimate)

NUMA: different-socket L3 read
Allocation+deallocation pair (small objects)
NUMA: different-socket main RAM read
Kernel call

Thread context switch (direct costs)
C++ Exception thrown+caught

Thread context switch (total costs,
including cache invalidation)

Distance which light travels
while the operation is performed

100 101
~1
(03 |
12|
1-3 |
3-4 |
10-12]
10-20 |
1040 |
15-30 |
15-30 |
15-40 |
EX
EXXH
0>

£

A O

102

100-300
100-300

200-500
300-500

Not all CPU operations are created equal

103 104 10°

1000-1500
5000-10000

10°

10000 - 1 million

e,

30km

ki,

>

©2021 Adobe. All Rights Reserved.

What is wrong with C++

- C++ allow us to control memory layout and sharing
- Compiler is blind to sharing - aliasing + mutation kills optimization
- Developer is also blind to sharing making code difficult to reason about
- Lack of safety makes it very difficult especially in the presence of concurrency for new developers
- Basic library primitives for concurrency (threads) are very expensive

- Performance penalty (Stepanov Abstraction Penalty) to wrap basic arithmetic types

- l.e. treat a uint8 t as a value from 0.0 - 1.0

- Code the same algorithm with different function names or pay the tax

'4‘ Adobe ©2021 Adobe. All Rights Reserved.

C++

- Despite the limitations and drawbacks, C++ is still performance king*
- Adobe has a massive investment in C++ code bases
- Can C++ be improved enough?

- The pace of C++ advancement is still rapid

- If another language proved to be better, what does the migration look like?

'4‘ Adobe ©2021 Adobe. All Rights Reserved.

Possible Future?

- In 2007 | gave a Google TechTalk, A Possible Future of Software Development

- Observation - Most developers cannot write a correct binary search (still true)
- An argument for developing generic libraries and concepts

- Conjecture - All problems of scale become a network problem

- An argument for developing declarative systems
- BNF, SQL, HTML, Spreadsheets

- In imperative languages a single relationship becomes multiple functions

'4‘ Adobe ©2021 Adobe. All Rights Reserved.

Imperative Solution to Mini-Image Size

F\\ Adobe

#Fimport
#import
#Fimport
#import
#import
#import
#import
#import
#import
#import

/* Here is the class declaration for the controller. */

Pinterface ImageSizeController : KSObject {

ImageSizeController.h
<Foundation/NSObject.h>
<AppKit/NSNibDeclarations,h>
<AppRit/NSControl.h>
<AppKit/NSCell.h>
<Foundation/NSNumberFormatter,h>
<Foundation/NSNotification.h»
<AppKit/NSTextField, h>

<math.h>

<stddef,h>

IBoutlet id heightPield ;
I8outlet id widthField_;

IBoutlet id constrainProportionsBox_;

I80utlet id usePercentagesBox_;

IBoutlet NSNumberFormatter *pixelFormatter_

IBOutlet NSNumberFormatter *percentFormatter ;
fprivate

int initialWidthPixels ;

int initialHeightPixels ;

int widthPixels ;

int heightPixels_;

double widthPercentage ;

double heightPercentage ;

BOOL constrainProportions ;

BOOL usePercentages ;

(void) showWidth;

(void) showHeight;

(void) showAll;

(IBAction) heightAction: (id)sender;
(IBAction) widthAction: (id)sender;
(IBAction) constrainProportionsAction: (id)sender;
(IBAction) usePer gesAction: (id)sender;
(IBAction) apply: (id)sender;

(IBAction) revert: (id)sender;

(void) awakeFromNib;

end

LN R I B B B B B g

#implementation ImageSizeController
/* Update the width field, */

- (void) showWwidth {
1f(usePercentages_) {

TextField setDoubleValueAndPormatter(
widthPield , widthPercentage ,
percentFormatter);

} else {

TextPield setIntValueAndFormatter(

widthPield , widthPixels , pixelPormatter);

/* Update the height field. */

= (void) showHeight {
if(usePercentages_) {
TextField_setDoubleValueAndFormatter(
heightField_, heightPercentage ,
percentFormatter_);
} else {
TextField_setIntValueAndFormatter(
heightField , heightPixels_, pixelFormatter_);

/* Update width and height fields. */

- (void) showWidthAndHeight {
[self showWidth |;
[self showHeight);

/* Update all controls. */

= (void) showAll {
| self showWidthAndHeight |;
| useP B 8

ud’o:c;nugl;_ ? NSOnState : NSOffState |;
[constrainProportionsBox_ setState:
constrainProportions_ ? NsOnsState : Nsoffstate J;

/* Revert the width and height. This works regardless of
the checkbox states. */

- (void) revertWidthAndHeight (
widthPixels = initialWidthPixels_;
widthPercentage = 100,0;

heightPixels = initialHeightPixels ;
heightPercentage = 100.0;

[self showWidthAndHeight);

/* The revert button does its work via
revertWidthAndHeight. */

= (IBAction) revert: (id) sender {
| self revertWidthAndHeight |;
}

/* Handle the apply button by copying over the width and
height. This alsc sets the percentage values. If we are

diesplaying percentages, then we need to update. We update
for pixels as well in case this forced any rounding. */

- (IBAction) apply: (id) sender {
initialWidthPixels = widthPixels ;
widthPercentage = 100.0;

initialHeightPixels = heightPixels ;
heightPercentage = 100.0;

[self showWidthAndHeight];

/* Handle an event from the use percentages checkbox. */

= (IBAction) usePercentagesAction: (id) sender {
BOOL UseP ages = | der state) == NSOnState;
if(newUsePercentages != usePercentages_) {
usePercentages_ = newlUsePercentages;
[self showWidthAndHeight];

/* Handle an event from the constrain proportions checkbox.
x/

- (IBAction) constrainProportionsAction: (id) sender {
BOOL newConstrainProportions =
[sender state] == NSOnState;
if(newConstrainProportions ! constrainProportions){
constrainProportions = newConstrainProportions;
if(newConstrainProporticns) {
[self revertWidthAndHeight];
}

/* The following routines handle conversiocn between pixels
and percentages for width and height. */

= (void) widthPixelsFromPercentage {
widthPixels_ = (int)
floor(initialwidthPixels_ * widthPercentage_
£ 100.0 + 0.5);

- (void) widthPercentageFromPixels {
widthPercentage =
widthPixels * 100.0 / initialWidthPixels ;

- (void) heightPixelsPromPercentage {
heightPixels = (int)
floor(initialHeightPixels # heightPercentage
/ 100.0 4 0.5);

= (void) heightPercentageFromPixels {
heightPercentage_ =
heightPixels_ * 100.0 / initialHeightPixels ;

/* Process a change to the width field. */

- (IBAction) widthAction: (id) sender {
if(usePercentages_) {
widthPercentage_ =
TextField_unformattedboubleValue(sender);
[self widthPixelsFromPercentage |;
} else {
widthPixels =
TextField unformattedIntValue(sender);
[self widthPercentageFromPixels |;
}

if(constrainProportions) {
heightPercentage = widthPercentage ;
[self heightPixelsFromPercentage |;
[self showHeight);

/* Process a change to the height field. */

= (IBAction) heightAction: (id) sender {
if(usePercentages_) {
heightPercentage_ =
TextField_unformattedboubleValue(sender);
[self heightPixelsFromPercentage |;

21

} else
heightPixels =
TextField unformattedIntValue(sender);
[self heightPercentageFromPixels];

}

if(constrainProportions) {
widthe ge = heightp ge_;
[self widthPixelsFromPercentage];
[=elf showWidth);

}

/* When we start up, we want to set initial values, This
would ordinarily be

done by code that was creating the controller and then
running it with the dialog

NIB, but we aren't worrying about that here, ¢/

- (void) awakeFromNib {
initialWidthPixels = widthPixels = 400;
initialHeightPixels_ = heightPixels_ = 300;
widthPercentage = 100.0;
heightPercentage_ = 100.0;
constrainProportions_ = YEg;
usePercentages_ = NO;
[self showAll |;

€end

© 2021 Adobe. All Rights Reserved.

Declarative Solution using the Property Model Library

sheet mini_image_size
{
input:
original_width :5 * 300;
original_height : 7 * 300;
interface:
constrain : true;
width_pixels : original_width <==round(width_pixels);
height_pixels :original height <==round(height_pixels);
width_percent;
height_percent;
logic:
relate {
width_pixels <==round(width_percent * original_width / 100);
width_percent <==width_pixels * 100 / original_width;
}
relate {
height_pixels <==round(height_percent * original_height / 100);
height_percent <==height_pixels * 100 / original_height;
}
when (constrain) relate {
width_percent <==height_percent;
height_percent <==width_percent;
}
output:
result <== { height: height_pixels, width: width_pixels };

}

F\\ Adobe 22 © 2021 Adobe. All Rights Reserved.

Where do programming languages need to go

- Major shift from developer productivity to code efficiency
- Locality, locality, locality
- Data oriented, array based
- Value semantics with safe mutability
- Reference semantics and garbage collectors are problematic
- Computation kernels
- Supporting SIMD and GPU code generation

- See Halide language

'4‘ Adobe 23 ©2021 Adobe. All Rights Reserved.

Example of Halide

Func blur_3x3(Func input) A
Func blur_x, blur_y;
Var x, y, X1, VYyi;

// The algorithm — no storage or order
blur_x(x, vy) (input(x-1, y) + input(x, y) + input(x+1, vy))/3;
blur_y(x, vy) (blur_x(x, y-1) + blur_x(x, y) + blur_x(x, y+1))/3;

// The schedule - defines order, locality, implies storage
blur_y.tile(x, y, xi, yi, 256, 32)

.vectorize(xi, 8).parallel(y);
blur_x.compute_at(blur_y, x).vectorize(x, 8);

return blur_y;

}

'4‘ Adobe ©2021 Adobe. All Rights Reserved.

Possible?

blur 3x3

d.

©2021 Adobe. All Rights Reserve

FA\ Adobe

Where do programming languages need to go

- Switch emphasis from safety to correctness
- Higher level semantics allows for more optimization
- Graph based
- Ability to control flow between software components

- Shift from functions to relationships

'4‘ Adobe 26 ©2021 Adobe. All Rights Reserved.

Machine Learning - the wild card

- CoreML (Apple)
- DirectML (Microsoft)

- Neural Engine (Apple)

- TPU (Google)

'4‘ Adobe 27 ©2021 Adobe. All Rights Reserved.

About the artist

UV Zhu

With an eye for the abstract, Chinese artist UV Zhu

remixes patterns, textures, and colors to explore the
future of fashion. Using Adobe Photoshop, Adobe
Illustrator, and Maxon Cinema 4D, he blends surreal
settings, organic shapes, and even favorite foods to
challenge convention. Inspired by his travels—around
the Internet and in real life—for this piece, UV
fantasized about characters moving through an
imaginary world, the things they might do, and what
they might wear. The result is a bright, colorful
expression of joy and positivity.

Made with

. Adobe Photoshop . Adobe Illustrator

