'“ Warning: std::find() is broken!
Adobe

Sean Parent | Sr. Principal Scientist, STLab

Artork B MemomiiSate apan

“Understanding why software
fails is important, but the real
challenge is understanding why
software works.”

- Alexander Stepanov

> > > > - > > > > > > > > > > > > >

>

> > > b > > B> B> B> B> B> B> > b > B> b > b

> > > b > > > > > b > b > B> b b > b D

> b
> D

> > b b b b
>b>b>bbb

> > b b > b b b b
>>b>b>bDbBDbDBD

> D
> b
> D
>

>

>D>b>b>D>DDDDBDBDBDBDDR
>>D>DbDbBDDBDBDBDBDBDBDDBD
> > > > D> B> B> DB DB DB DB Db D
> > > > > > > 5> 5> 5> b5 55> 5> 5> 5> 5> >

>

>D> D
> D> D> D
> > > b

-

> > > b > > B> B> > B> B> > B> b > B> b > b

-

> > > > > > > >

> > > > >

> > > > >

h‘ Adobe

Robert W. Floyd

ASSIGNING MEANINGS TO PROGRAMS:

Introduction. This paper attempts to provide an adequate basis for
formal definitions of the meanings of programs in appropriately defined
programming languages, in such a way that a rigorous standard is established
for proofs about computer programs, including proofs of correctness,
equivalence, and termination. The basis of -our approach is the notion of
an interpretation of a program: that is, an association of a proposition
with each connection in the flow of control through a program, where the
proposition is asserted to hold whenever that connection is taken. To prevent
an interpretation from being chosen arbitrarily, a condition is imposed on
each command of the program. This condition guarantees that whenever
a command is reached by way of a connection whose associated proposition
is then true, it will be left (if at all) by a connection whose associated
proposition will be true at that time. Then by induction on the number of
commands executed, one sees that if a program is entered by a connection
whose associated proposition is then true, it will be left (if at all) by a
connection whose associated proposition will be true at that time. By this
means, we may prove certain properties of programs, particularly properties
of the form: “If the initial values of the program variables satisfy the
relation R;, the final values on completion will satisfy the relation R,.”
Proofs of termination are dealt with by showing that each step of a program
decreases some entity which cannot decrease indefinitely.

These modes of proof of correctness and termination are not original;
they are based on ideas of Perlis and Gorn, and may have made their
earliest appearance in an unpublished paper by Gorn. The establishment
of formal standards for proofs about programs in languages which admit
assignments, transfer of control, etc., and the proposal that the semantics
of a programming language may be defined independently of all processors
for that language, by establishing standards of rigor for proofs about

! This work was supported by the Advanced Research Projects Agency of the Office of
the Secretary of Defense (SD-146).

1967

© 2021 Adobe. All Rights Reserved.

Robert W. Floyd

ASSIGNING MEANINGS TO PROGRAMS

Pl UPUDILLIVILL 1D AdDUL LCU LU LIVIU WIITCIIT VTL LllAal LULILICULLLIULL 1D vancil. 1 v plCVCllI’
an interpretation from being chosen arbitrarily, a condition is imposed on
each command of the program. This condition guarantees that whenever
a command is reached by way of a connection whose associated proposition
is then true, it will be left (if at all) by a connection whose associated
proposition will be true at that time. Then by induction on the number of
commands executed, one sees that if a program is entered by a connection
whose associated proposition is then true, it will be left (if at all) by a
connection whose associated proposition will be true at that time. By this
means, we may prove certain properties of programs, particularly properties
of the form: “If the initial values of the program variables satisfy the
relation R;, the final values on completion will satisfy the relation R,.”
Proofs of termination are dealt with by showing that each step of a program
decreases some entity which cannot decrease indefinitely.

These modes of proof of correctness and termination are not original;
they are based on ideas of Perlis and Gorn, and may have made their
earliest appearance in an unpublished paper by Gorn. The establishment
of formal standards for proofs about programs in languages which admit 1967
assignments, transfer of control, etc., and the proposal that the semantics
of a programming language may be defined independently of all processors
for that language, by establishing standards of rigor for proofs about

! This work was supported by the Advanced Research Projects Agency of the Office of
the Secretary of Defense (SD-146).

'K‘ Adobe © 2021 Adobe. All Rights Reserved.

I\ Adobe

An Axiomatic Basis for
Computer Programming

C. A. . Hoare
The Queen’s University of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical founda-
tions of ¥ progr ing by use of technig which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and
a formal proof of a simple theorem is displayed. Finally, it is
argued that important advantages, both theoretical and prac-
tical, may follow from a pursuance of these topics.

KEY WORDS AND PHRASES: axiomatic method, theory of programming?
proofs of prog formal guage definition, prog ing

design, hil prog ing, program

CR CATEGORY: 4.0, 4.21, 4,22, 5,20, 5.21, 5.23, 5.24

1. Imtroduction

Computer programming is an exact science in that all
the properties of a program and all the consequences of
executing it in any given environment ean, in prineiple,
be found out from the text of the program itself by means
of purely deductive reasoning. Deductive reasoning in-
volves the application of valid rules of inference to sets of
valid axioms. It is therefore desirable and interesting to
elucidate the axioms and rules of inference which underlie
our reasoning about computer programs. The exaet choice
of axioms will to some extent depend on the choice of
programming language, For illustrative purposes, this
paper 1s confined to a very simple language, which is effec-
tively asubset of all eurrent procedure-oriented langunges.

2. Computer Arithmetic

The first requi nt in valid ing about a pro-
gram is to know the properties of the elementary operations
which it invokes, for example, addition and multiplieation
of integers. Unfortunately, in several respects computer
arithmetic is not the same as the arithmetic familiar to
mathematicians, and it is necessary to exercise some care
in selecting an appropriate set of axioms. For example, the
axioms displayed in Table I are rather a small selection
of axioms relevant to integers. From this incomplete set

* Department of Computer Seience

376 Communications of the ACM

of axioms it is possible to deduee such simple theorems as:
r=x+y X0
yErdrtyXg=(r—y)+yX(1+gq)

The proof of the second of these is:

Ad =yl +ux (14+4q)

=)+ wX1+yxqg

A9 r—y)+ w+yXq

A3 (r—w)+w+yXxq

A =r+y X qg providedy <

The axioms Al to A9 are, of course, true of the tradi-
tional infinite set of integers in mathematics. However,
they are also true of the finite sets of “integers” which are
manipulated by computers provided that they are eon-
fined to nonnegative numbers, Their truth is independent
of the size of the set; furthermore, it is largely independent
of the choice of technique applied in the event of “over-
flow”; for example:

(1} Striet interpretation: the result of an overflowing
operation does not exist; when overflow oceurs, the offend-
ing program never completes its operation, Note that in
this case, the equalities of A1 to AD are striet, in the sense
that both sides exist or fail to exist together.

(2} Firm boundary: the result of an overflowing opera-
tion is taken as the maximum value represented.

(3) Modulo arithmetic: the result of an overflowing
operation is computed modulo the size of the set of integers
represented.

These three techniques are illustrated in Table IT by
addition and multiplication tables for a trivially small
model in which 0, 1, 2, and 3 are the only integers repre-
sented,

It is interesting to note that the different systems satisfy-
ing axioms Al to AY may be rigorously distinguished from
each other by choosing a particular one of a set of mutually
exclusive supplementary axioms. For example, infinite
arithmetic satisfies the axiom:

Al0; =3a¥y (y < 3),
where all finite arithmeties satisfy:
Al0, Wi (x < max)

[

n

where “max" denotes the largest integer represented.

Similarly, the three treatments of overflow may be
distinguisherd by a choice of one of the following axioms
relating to the value of max + 1:

Alls =3z (r=max + 1) (strict interpretation)
Ally max + 1 = max (firm boundary)
Ally max + 1 =0 (moduloe arithmetic)

Having selected one of these axioms, it is possible to
use it in deducing the properties of programs; however,

Volume 12 / Number 10 / October, 19649

1969

© 2021 Adobe. All Rights Reserved.

An Axiomatic Basis for
Computer Programming

C. A. R. HoAre
The Queen’s Unwversity of Belfast,* Northern Ireland

I\ Adobe

of purely deductive reasomng. Deductive reasomng in-
volves the application of valid rules of inference to sets of
valid axioms. It is therefore desirable and interesting to
elucidate the axioms and rules of inference which underlie
our reasoning about computer programs. The exaet choice
of axioms will to some extent depend on the choice of
programming language, For illustrative purposes, this
paper 1s confined to a very simple language, which is effec-
tively asubset of all eurrent procedure-oriented langunges.

2. Computer Arithmetic

The first requi nt in valid ing about a pro-
gram is to know the properties of the elementary operations
which it invokes, for example, addition and multiplieation
of integers. Unfortunately, in several respects computer
arithmetic is not the same as the arithmetic familiar to
mathematicians, and it is necessary to exercise some care
in selecting an appropriate set of axioms. For example, the
axioms displayed in Table I are rather a small selection
of axioms relevant to integers. From this incomplete set

* Department of Computer Seience

376 Communications of the ACM

It is interesting to note that the different systems satisfy-
ing axioms Al to AY may be rigorously distinguished from
each other by choosing a particular one of a set of mutually
exclusive supplementary axioms. For example, infinite
arithmetic satisfies the axiom:

Al0; =3a¥y (y < 3),
where all finite arithmeties satisfy:
Al0, Wi (x < max)

where “max" denotes the largest integer represented.

Similarly, the three treatments of overflow may be
distinguisherd by a choice of one of the following axioms
relating to the value of max + 1:

Alls =3z (r=max+ 1) (striet interpretation)
Ally max + 1 = max (firm boundary)
Ally max + 1 =0 (moduloe arithmetic)

Having selected one of these axioms, it is possible to
use it in deducing the properties of programs; however,

Volume 12 / Number 10 / October, 19649

1969

© 2021 Adobe. All Rights Reserved.

Reasoning About Code: Hoare Logic

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Reasoning About Code: Hoare Logic

= Hoare logic, also known as Floyd-Hoare logic, describes computation statements as a Hoare triple

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Reasoning About Code: Hoare Logic

= Hoare logic, also known as Floyd-Hoare logic, describes computation statements as a Hoare triple

P{O}R.

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Reasoning About Code: Hoare Logic

= Hoare logic, also known as Floyd-Hoare logic, describes computation statements as a Hoare triple

P{O}R.

» Where P is a precondition, Q is an operation, and R is the postcondition.

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Reasoning About Code: Hoare Logic

= Hoare logic, also known as Floyd-Hoare logic, describes computation statements as a Hoare triple

P{O}R.

» Where P is a precondition, Q is an operation, and R is the postcondition.

= Statements are combined with rules for assignment, consequence, composition, and iteration.

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Reasoning About Code: Hoare Logic

Hoare logic, also known as Floyd-Hoare logic, describes computation statements as a Hoare triple

P{O}R.

» Where P is a precondition, Q is an operation, and R is the postcondition.
= Statements are combined with rules for assignment, consequence, composition, and iteration.

= Given a sequence of statements and assuming an initial precondition, if we can show that the
subsequent postconditions guarantee subsequent preconditions are satisfied, then the program is
correct.

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Properties of Addition for Integers (Z)

Va,b,c € 7 (a+b)+c=a+ (b+c) (associative)
Va,b e 7 a+b=b+a (cummutative)
303 Va0 e ”Z a+0=a (additive identity)
Vae Z,3(-a) e Z > a+(-a)=0 (additive inverse)

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Z #* int

I\ Adobe

© 2021 Adobe. All Rights Reserved.

Z #* int

- When signed integers overflow or underflow the result is undefined.

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Z #* int

- When signed integers overflow or underflow the result is undefined.

 In Hoare logic this could be expressed as an additional axiom:

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Z #* int

- When signed integers overflow or underflow the result is undefined.

 In Hoare logic this could be expressed as an additional axiom:

—d(x € int) © (x > max)

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Z #* int

- When signed integers overflow or underflow the result is undefined.

 In Hoare logic this could be expressed as an additional axiom:
—d(x € int) © (x > max)

- Leading to a Hoare-triple:

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Z #* int

- When signed integers overflow or underflow the result is undefined.

 In Hoare logic this could be expressed as an additional axiom:
—d(x € int) © (x > max)
- Leading to a Hoare-triple:

(a+ b <max){intn=a+b; }(n < max)

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Z #* int

- When signed integers overflow or underflow the result is undefined.

 In Hoare logic this could be expressed as an additional axiom:
—d(x € int) © (x > max)
- Leading to a Hoare-triple:

(a+ b <max){intn=a+b; }(n < max)

“Even the characterization of integer arithmetic is far from complete”
- C.A.R. Hoare, An Axiomatic Basis for Computer Programming

h‘ Adobe © 2021 Adobe. All Rights Reserved.

#include <iostream>
#include <utility>

using namespace std;

int get_next_int(int* p) { 2. Entered call from 'main'
return xnext(p);

1
2
3
L
o)
6
;
- e 3. Calling 'next<int *>'

9
10 5. Returning from 'next<int *>'

11

. , 6. Undefined or garbage value returned to caller
12 int main() {

13 int a[l{0};
14 cout << get_next_int|{a} << "\n"; 1. Calling 'get_next_int'
15 1}

16

'K‘ Adobe © 2021 Adobe. All Rights Reserved.

I\ Adobe

Applying “Design by
Contract”

Bertrand Meyer

Interactive Software Engineering

Reliability is even more
important in object-
oriented programming
than elsewhere. This
article shows how to
reduce bugs by building
software components
on the basis of carefully
designed contracts.

40

development, users and prospective users of these techniques are clam-

B, oring more and more loudly for a "methodology™ of object-oriented

software construction — or at least for some methodological guidelines. This

article presents such guidelines, whose main goal is 1o help improve the reliability

of software systems. Reliability is here defined as the combination of correctness
and robustness or. more prosaically, as the absence of bugs.

Everyone developing software systems, or just using them, knows how pressing
this question of reliability is in the current state of sofiware enginecring. Yet the
rapidly growing literature on object-oriented analysis, design, and programming
includes remarkably few contributions on how to make object-oriented software
more reliable. This is surprising and regrettable, since at least three reasons justify
devoting particular atiention to reliability in the context of object-oriented devel-
‘il"ml.'nl.:

q sobject-oriented technigues steadily gain ground in the world of software

The cornerstone of object-oriented technology is reuse. For reusable compo-
nents, which may be used in thousands of different applications. the potential
consequences of incorrect behavior are éven more serious than for appheation-
specific developments.

* Proponents of object-oriented methods make strong claims about their bene-
ficial effect on software quality, Reliability is certainly a central component of
any reasonable definition of quality as applicd 1o software.

® The object-oriented approach. based on the theory of abstract data types,
provides a particularly appropriate framework for discussing and enforcing
reliahility

The pragmatic technigues presented in this article, while certainly not providing
infallible wavs 1o guarantee reliability, may help considerably toward this goal.
They rely on the theory of design by contract. which underlies the design of the
Eiffel analysis. design, and programming language' and of the supporting libraries,
from which a number of examples will be drawn,

The contributions of the work reported below include

®a coherent set of methodological principles helping to produce correct and
robust soliware;

® 4 systematic approach (o the delicate problem of how 1o deal with abnormal
cases, leading to a simple and powerful exceprion-handling mechanism: and

Vil £ 093 (EEE COMPUTER

1992 (original 1986)

© 2021 Adobe. All Rights Reserved.

I\ Adobe

Applying “Design by
Contract”

Bertrand Meyer

Interactive Software Engineering

Reliability is even more
important in object-
oriented programming
than elsewhere. This
article shows how to
reduce bugs by building
software components
on the basis of carefully
designed contracts.

The cornerstone of object-oriented technology is reuse. For reusable compo-
nents, which may be used in thousands of different applications. the potential
consequences of incorrect behavior are éven more serious than for appheation-
specific developments,

» Proponents of object-oriented methods make strong claims about their bene-
ficial effect on software quality, Reliability is certainly a central component of
any reasonable definition of quality as applied 1o sofltware.

® The object-oriented approach. based on the theory of abstract data types,
provides a particularly appropriate framework for discussing and enforcing
reliahility,

The pragmatic technigues presented in this article, while certainly not providing
infallible wavs 1o guarantee reliability, may help considerably toward this goal.
They rely on the theory of design by contract, which underlies the design of the
Eiffel analysis. design, and programming language' and of the supporting libraries,
from which a number of examples will be drawn,

The contributions of the work reported below include

®a coherent set of methodological principles helping to produce correct and
robust sofiware:

® 4 systematic approach (o the delicate problem of how 1o deal with abnormal
cases, leading to a simple and powerful exceprion-handling mechanism: and

T2] ARSI i) £ (083 (RS COMPUTER

1992 (original 1986)

© 2021 Adobe. All Rights Reserved.

Design by Contract

= Preconditions and postconditions are asserted in code, in the interface

set second (s: INTEGER)
-- Set the second from "s'.
require
valid argument for second: 0 <= s and s <= 59
ensure
second set: second = s
end

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Design by Contract

= Class invariants define postconditions for all (public) operations on a class

invariant
second valid: 0 <= second and second <= 59

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Design by Contract

= Class invariants define postconditions for all (public) operations on a class

invariant
second valid: 0 <= second and second <= 59

= By extension, class invariants define a precondition for any operation taking an instance of the class
as an argument

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Limitations of Design by Contract

= Assertions must be expressible in code

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Limitations of Design by Contract

= Assertions must be expressible in code

= Complexity of assertions is limited

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Limitations of Design by Contract

= Assertions must be expressible in code

= Complexity of assertions is limited

= A linear time assertion on a constant operation can transform code from O(n) to O(n » m)

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Limitations of Design by Contract

= Assertions must be expressible in code

= Complexity of assertions is limited

= A linear time assertion on a constant operation can transform code from O(n) to O(n » m)

« Cannot express universal quantifiers, V, or existential quantifiers, 4

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Key Contributions of Design by Contract

- Simplifies formal methods by inverting the process to top-down

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Key Contributions of Design by Contract

- Simplifies formal methods by inverting the process to top-down

= Given a precondition, it is simpler to prove a function satisfies a postcondition than to derive a
preconditions and postconditions from a composition of operations

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Key Contributions of Design by Contract

- Simplifies formal methods by inverting the process to top-down

= Given a precondition, it is simpler to prove a function satisfies a postcondition than to derive a
preconditions and postconditions from a composition of operations

= Makes formal methods practical for every programmer

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

“With a sufficient number of users of
an AP, it does not matter what you
promise in the contract: all
observable behaviors of your system
will be depended on by somebody.”

- Hyrum Wright

> > > b > > B> B> B> B> B> B> > b > B> b > b

> > > b > > > > > b > b > B> b b > b D

> D
> b
> D
>

>

> b
> D

> b b
> > b

> > b
> b b

> > b > b b b b
>b>b>b>bDbBDD

>
>

>D>b>b>D>DDDDBDBDBDBDDR
>>D>DbDbBDDBDBDBDBDBDBDDBD
> > > > D> B> B> DB DB DB DB Db D
> > > > > > > 5> 5> 5> b5 55> 5> 5> 5> 5> >

>

>D> D
> D> D> D
> > > b

-

> > > b > > B> B> > B> B> > B> b > B> b > b

Remove the first odd number (attempt 1):

vector a{0, 1, 2, 3, 4, 5};

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Remove the first odd number (attempt 1):
vector a{0, 1, 2, 3, 4, 5};

auto p = remove_if(begin(a), end(a), [n = 0] (int x) mutable {
return (x & 1) & (n++ == 0);
F);

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Remove the first odd number (attempt 1):

vector a{0, 1, 2, 3, 4, 5};

auto p = remove_if(begin(a), end(a), [n = 0] (int x) mutable {
return (x & 1) & (n++ == 0);
F);

a.erase(p, end(a));
display(a);

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Remove the first odd number (attempt 1):

vector a{o, 1, 2, 3, 4, 5};
auto p = remove_if(begin(a), end(a), [n = 0] (int x) mutable {

return (x & 1) & (n++ == 0);
)

a.erase(p, end(a));
display(a);

{ 0’ 2' 4' 5 }

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Remove the first odd number (attempt 1):

vector a{0, 1, 2, 3, 4, 5};

auto p = remove_if(begin(a), end(a), [n = 0] (int x) mutable {
return (x & 1) & (n++ == 0);
F);

a.erase(p, end(a));
display(a);

{ 0’ 2' 4' 5 }
{ @' 2’ 3' 4’ 5 }

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Implementation of std::remove_if()

template <class F, class P>

auto remove if(F f, F 1, P pred) {
f = find_if(f, 1, pred); // <— pred is passed by value
if (f == 1) return f;

for (auto p = next(f); p !'= 1; ++p) {
if (!'pred(xp)) xf++ = move(xp);
}

return f;

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Remove the first odd number (attempt 2):

vector a{0, 1, 2, 3, 4, 5};

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Remove the first odd number (attempt 2):

vector a{0, 1, 2, 3, 4, 5};

int n = 0;
auto p = remove_if(begin(a), end(a), [&n](int x) {
return (x & 1) & (n++ == 0);

});

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Remove the first odd number (attempt 2):

vector a{0, 1, 2, 3, 4, 5};

int n = 0;

auto p = remove_if(begin(a), end(a), [&n](int x) {
return (x & 1) & (n++ == 0);

F);

a.erase(p, end(a));
display(a);

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Remove the first odd number (attempt 2):

vector a{0, 1, 2, 3, 4, 5};

int n = 0;

auto p = remove_if(begin(a), end(a), [&n](int x) {
return (x & 1) & (n++ == 0);

F);

a.erase(p, end(a));
display(a);

{ @' 2’ 3' 4’ 5 }

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Standard Requirement for Unary Predicate

= "Given a glvalue u of type (possibly const) T that designates the same object as * first, pred(u)
shall be a valid expression that is equal to pred(*first).

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Standard Requirement for Unary Predicate

= "Given a glvalue u of type (possibly const) T that designates the same object as * first, pred(u)
shall be a valid expression that is equal to pred(*first).

» pred() is a required to be a regular function.

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Standard Requirement for Unary Predicate

= "Given a glvalue u of type (possibly const) T that designates the same object as * first, pred(u)
shall be a valid expression that is equal to pred(*first).

» pred() is a required to be a regular function.

= But Hyram's Law...

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Unnecessary Preconditions

= Unnecessary precondition is a precondition in the contract, not imposed by the implementation

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Unnecessary Preconditions

= Unnecessary precondition is a precondition in the contract, not imposed by the implementation

= No precondition is expressed as True{ QO } R

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Unnecessary Preconditions

= Unnecessary precondition is a precondition in the contract, not imposed by the implementation

= No precondition is expressed as True{ QO } R

 Not stating precondition assumes no-precondition

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Unnecessary Preconditions

= Unnecessary precondition is a precondition in the contract, not imposed by the implementation
= No precondition is expressed as True{ QO } R

 Not stating precondition assumes no-precondition

= Except for those imposed by convension

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Unnecessary Preconditions

Unnecessary precondition is a precondition in the contract, not imposed by the implementation

No precondition is expressed as True{ O } R

Not stating precondition assumes no-precondition

= Except for those imposed by convension

Are operations without preconditions or weakest preconditions "good™?

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Unnecessary Preconditions

Unnecessary precondition is a precondition in the contract, not imposed by the implementation

No precondition is expressed as True{ O } R

Not stating precondition assumes no-precondition

= Except for those imposed by convension

Are operations without preconditions or weakest preconditions "good™?

= Are unnecessary preconditions “bad"™?

h‘ Adobe © 2021 Adobe. All Rights Reserved.

“It's complicated.”

- Kate Gregory

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

> > > b > > > > > b > b > B> b b > b D

> > b b b
>>b>bHbH

> D
>
>

> > b b
> D> 5> b

>
>

> > b b b b
>>b>bDbDb

> > b
> > b

>
>
>

> b
> >

>D>b>b>D>DDDDBDBDBDD
>>b>DbDbBDBDBD>DBDD
> > > > D> b B> b b b

> > > > > > > 5> 5> 5> b5 55> 5> 5> 5> 5> >

>

>D> D
> D> D> D
> > > b

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

Signed vs Unsigned Integral Types

« Signed integral types in C++ have more preconditions than unsigned types

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Signed vs Unsigned Integral Types

« Signed integral types in C++ have more preconditions than unsigned types

= Itis undefined behavior to overflow or underflow a signed type

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Signed vs Unsigned Integral Types

« Signed integral types in C++ have more preconditions than unsigned types

= Itis undefined behavior to overflow or underflow a signed type

. unsigned types are mod(2%)

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Signed vs Unsigned Integral Types

« Signed integral types in C++ have more preconditions than unsigned types

= Itis undefined behavior to overflow or underflow a signed type

. unsigned types are mod(2%)

= Unsigned type arithmetic still has preconditions

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Signed vs Unsigned Integral Types

« Signed integral types in C++ have more preconditions than unsigned types

= Itis undefined behavior to overflow or underflow a signed type

. unsigned types are mod(2%)

= Unsigned type arithmetic still has preconditions

unsigned a;
unsigned b = a + 1lu; // undefined behavior

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Signed vs Unsigned Integral Types

« Signed integral types in C++ have more preconditions than unsigned types

= Itis undefined behavior to overflow or underflow a signed type

. unsigned types are mod(2%)

= Unsigned type arithmetic still has preconditions

unsigned a;
unsigned b = a + 1lu; // undefined behavior

- A precondition of reading a variable is that it has been initialized

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Bresenham Line Algorithm

template <class F>
void bresenham_line(int dx, int dy, F out) {
assert((0 <= dy) && (dy <= dx) && (dx <= (INT_MAX - dy)));

for (int x =0, y =0, a=dy / 2; x '=dx; ++x) {
out(x, y);
a += dy;
if (dx <= a) {
++y;
a —= dx;

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Bresenham Line Algorithm

bresenham_1line(10, 6, [](auto, auto y) {
cout << string(y, ' ') << "x\n";
1)

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Bresenham Line Algorithm

bresenham_1line(10, 6, [](auto, auto y) {
cout << string(y, ' ') << "x\n";

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Bresenham Line Algorithm

template <class F>
volid bresenham_1line(int dx, int dy, F out) {
assert((0 <= dy) & (dy <= dx) && (dx <= (INT_MAX - dy)));

for (int x =0, vy =0, a =dy / 2; x !'= dx; ++x) {
out(x, y);
a += dy;
if (dx <= a) {
++y;
a —= dx;

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Bresenham Line Algorithm

a += dy;
if (dx <= a) {

a —= dx;

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Bresenham Line Algorithm

a += dy;
if (dx <= a) {

3 —= dx: a+ dy — a (mod dx)

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Bresenham Line Algorithm

= Unsigned integer arithmetic in C++ is mod 2" = mod (max + 1)

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Bresenham Line Algorithm

= Unsigned integer arithmetic in C++ is mod 2" = mod (max + 1)

» Project the slop to dx’ = max + 1

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Bresenham Line Algorithm

= Unsigned integer arithmetic in C++ is mod 2" = mod (max + 1)

» Projectthesloptodx’ = max + 1
dy dy
dx (max+1)
, (max+ 1)dy
- dx

dy

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Fast Bresenham Line Algorithm - exploiting unsigned

template <class F>
void fast_bresenham_line(unsigned dx, unsigned dy, F out) {
assert(dy < dx);

dy = (UINT_MAX + 1.0) x dy / dx;
for (unsigned x =0, y =0, a =dy / 2; x !'= dx; ++x) {
out(x, y);

a += dy; // add ebx, rl2d
y += a < dy; // addc rl5d, 0

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Fast Bresenham Line Algorithm

fast_bresenham_line(10, 6, [](auto, auto y) {
cout << string(y, ' ') << "x\n";
F);

'K‘ Adobe © 2021 Adobe. All Rights Reserved.

Fast Bresenham Line Algorithm

fast_bresenham_line(10, 6, [](auto, auto y) {
cout << string(y, ' ') << "x\n";

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Unsigned vs Signed Integers

= |tis easier to detect overflow with modular arithmetic

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Unsigned vs Signed Integers

= |tis easier to detect overflow with modular arithmetic

* Modular arithmetic properties can be exploited

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Unsigned vs Signed Integers

= |tis easier to detect overflow with modular arithmetic

* Modular arithmetic properties can be exploited

» Usually math is modeling a subset of Z or N

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Unsigned vs Signed Integers

= |tis easier to detect overflow with modular arithmetic

* Modular arithmetic properties can be exploited

» Usually math is modeling a subset of Z or N

= Signed math provides more opportunities for analyzers to detect possible overflow

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Unsigned vs Signed Integers

= |tis easier to detect overflow with modular arithmetic

* Modular arithmetic properties can be exploited

» Usually math is modeling a subset of Z or N
= Signed math provides more opportunities for analyzers to detect possible overflow

= Signed math provides more opportunities for compilers to optimize assuming no overflow

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Undefined Behavior Can Catch Defects

template <class F>
void bresenham_line(int dx, int dy, F out) {
for (int x =8, v =8, a=dy / 2; x != dx; ++x) {

out(x, y);
a += dy; i Signed integer overflow: 1073741823 + 2147483647 cannot be represented in type 'int’
if (1{a < dx)) {
t+yi
a == dx;
}

'K‘ Adobe © 2021 Adobe. All Rights Reserved.

Unsigned vs Signed Integers

= Type attributes are a possible solution:

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Unsigned vs Signed Integers

= Type attributes are a possible solution:

unsigned [[limits(@, 59) 1] seconds{0};

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Unnecessary Preconditions

» Provide flexibility of implementation

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Unnecessary Preconditions

= Provide flexibility of implementation

= (Can ascribe meaning and intent to an operation

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Unnecessary Preconditions

= Provide flexibility of implementation
= (Can ascribe meaning and intent to an operation

= Simplify requirements and reasoning about code

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Unnecessary Preconditions

= Provide flexibility of implementation

Can ascribe meaning and intent to an operation

- Simplify requirements and reasoning about code

= Limit clever uses that exploit defined behavior

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Unnecessary Preconditions

= Provide flexibility of implementation
= (Can ascribe meaning and intent to an operation

- Simplify requirements and reasoning about code

= Limit clever uses that exploit defined behavior

= Allow for variance in behavior between implementations

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Unnecessary Preconditions

= Provide flexibility of implementation
= (Can ascribe meaning and intent to an operation

- Simplify requirements and reasoning about code
= Limit clever uses that exploit defined behavior

= Allow for variance in behavior between implementations

= Open an opportunity for Hyram'’s law

h‘ Adobe © 2021 Adobe. All Rights Reserved.

“God created the natural
numbers. All else is the work of

man.
- Leopold Kronecker

> > > b > > B> B> B> B> B> B> > b > B> b > b

> > > b > > > > > b > b > B> b b > b D

> D
> b
> D
>

>

> > b b b
> > 5> b b

> b b b b
> > bbb

> b b
> > b

> > b
> b b

>
>

>D>b>b>D>DDDDBDBDBDBDDR
>>D>DbDbBDDBDBDBDBDBDBDDBD
> > > > D> B> B> DB DB DB DB Db D
> > > > > > > 5> 5> 5> b5 55> 5> 5> 5> 5> >

>

>D> D
> D> D> D
> > > b

-

> > > b > > B> B> > B> B> > B> b > B> b > b

h‘ Adobe

Generic Programming™

David R. Musser! Alexander A. Stepanov
Rensselaer Polytechnic Institute Hewlett—Packard Laboratories
Computer Science Department, Software Technology Laboratory
Amos Eaton Hall Post Office Box 10490
Troy, New York 12180 Palo Alto, California 94303-0969
Abstract

Generic programming centers around the idea of abstracting from concrete, el-
ficient algorithms to obtain generic algorithms that can be combined with different
data representations to produce a wide variety of useful software. For example, a
class of generic sorting algorithms can be defined which work with finite sequences
but which can be instantiated in different ways to produce algorithms working on
arrays or linked lists.

Lour kinds of abstraction data, algorithmic, structural, and representational
are discussed, with examples of their use in building an Ada library of software
components. The main topic discussed is generic algorithms and an approach to
their formal specification and verification, with illustration in terms of a partitioning
algorithm such as is used in the quicksort algorithm. It is argued that generically
programmed software component libraries offer important advantages for achieving
software productivity and reliability.

*This paper was presented at the First International Joint Conference of ISSAC-88 and AAECC-6,
Rome, Ttaly, July 4-8, 1988. (ISSAC stands for International Symposium on Symbolic and Algebraic
Computation and AAECC for Applied Algebra, Algebraic Algorithms, and Error Correcting Codes). It
was published in Lecture Notes in Computer Science 358, Springer-Verlag, 1989, pp. 13-25.

TThe first author’s work was sponsored in part through a subcontract from Computational Logic,
Inc., which was sponsored in turn by the Delense Advanced Research Projects Agency, ARPA order
91561, The views and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, cither expressed or implied, of the Defense Advanced
Research Projects Agency, the U.S. Government, or Computational Logic., lnc.

1989

© 2021 Adobe. All Rights Reserved.

I\ Adobe

Generic Programming”

David R. Musser' Alexander A. Stepanov
Rensselaer Polytechnic Institute Hewlett—Packard Laboratories

Computer Science Department Software Technology Laboratory
Amos Eaton Hall Post Office Box 10490
Troy, New York 12180 Palo Alto, California 943030969

Abstract

Generic programming centers around the idea of abstracting from concrete, el-
ficient algorithms to obtain generic algorithms that can be combined with different
data representations to produce a wide variety of useful software. For example, a
class of generic sorting algorithms can be defined which work with finite sequences
but which can be instantiated in different ways to produce algorithms working on
arrays or linked lists.

Lour kinds of abstraction data, algorithmic, structural, and representational
are discussed, with examples of their use in building an Ada library of software
components. The main topic discussed is generic algorithms and an approach to
their formal specification and verification, with illustration in terms of a partitioning
algorithm such as is used in the quicksort algorithm. It is argued that generically
programmed software component libraries offer important advantages for achieving
software productivity and reliability.

*This paper was presented at the First International Joint Conference of ISSAC-88 and AAECC-6,
Rome, Ttaly, July 4-8, 1988. (ISSAC stands for International Symposium on Symbolic and Algebraic
Computation and AAECC for Applied Algebra, Algebraic Algorithms, and Error Correcting Codes). It
was published in Lecture Notes in Computer Science 358, Springer-Verlag, 1989, pp. 13-25.

TThe first author’s work was sponsored in part through a subcontract from Computational Logic,
Inc., which was sponsored in turn by the Delense Advanced Research Projects Agency, ARPA order
91561, The views and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, cither expressed or implied, of the Defense Advanced
Research Projects Agency, the U.S. Government, or Computational Logic., lnc.

1989

© 2021 Adobe. All Rights Reserved.

I\ Adobe

Generic Programming”

David R. Musser! Alexander A. Stepanov
Rensselaer Polytechnic Institute Hewlett—Packard Laboratories
Computer Science Department Software Technology Laboratory

Amos Eaton Hall Post Office Box 10490
Troy, New York 12180 Palo Alto, California 943030969

Abstract

Generic programming centers around the idea of abstracting from concrete, el-
ficient algorithms to obtain generic algorithms that can be combined with different
data representations to produce a wide variety of useful software. For example, a
class of generic sorting algorithms can be defined which work with finite sequences
but which can be instantiated in different ways to produce algorithms working on
arrays or linked lists.

Lour kinds of abstraction data, algorithmic, structural, and representational
are discussed, with examples of their use in building an Ada library of software
components. The main topic discussed is generic algorithms and an approach to
their formal specification and verification, with illustration in terms of a partitioning
algorithm such as is used in the quicksort algorithm. It is argued that generically
programmed software component libraries offer important advantages for achieving
software productivity and reliability.

*This paper was presented at the First International Joint Conference of ISSAC-88 and AAECC-6,
Rome, Ttaly, July 4-8, 1988. (ISSAC stands for International Symposium on Symbolic and Algebraic
Computation and AAECC for Applied Algebra, Algebraic Algorithms, and Error Correcting Codes). It
was published in Lecture Notes in Computer Science 358, Springer-Verlag, 1989, pp. 13-25.

TThe first author’s work was sponsored in part through a subcontract from Computational Logic,
Inc., which was sponsored in turn by the Delense Advanced Research Projects Agency, ARPA order
91561, The views and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, cither expressed or implied, of the Defense Advanced
Research Projects Agency, the U.S. Government, or Computational Logic., lnc.

1989

© 2021 Adobe. All Rights Reserved.

h‘ Adobe

Fundamentals of Generic Programming

James C. Dehnert and Alexander Stepanov

Silicon Graphics, Inc.
dehnertj@acm.org, stepanov@attlabs.att.com

Keywords: Generic programming, operator semantics, concept, regular type.

Abstract. Generic programming depends on the
decomposition of programs into components which may be
developed separately and combined arbitrarily, subject only
to well-defined interfaces. Among the interfaces of interest,
indeed the most pervasively and unconsciously used, are
the fundamental operators common to all C++ built-in types,
as extended to user-defined types, e.g. copy constructors,
assignment, and equality. We investigate the relations which
must hold among these operators to preserve consistency
with their semantics for the built-in types and with the
expectations of programmers. We can produce an
axiomatization of these operators which yields the required
consistency with built-in types, matches the intuitive
expectations of programmers, and also reflects our
underlying mathematical expectations.

Copyright © Springer-Verlag. Appears in Lecture Notes in Computer Science
(LNCS) volume 1766. See http://www.springer.de/comp/Incs/index.html .

1992

© 2021 Adobe. All Rights Reserved.

Fundamentals of Generic Programming

James C. Dehnert and Alexander Stepanov

Silicon Graphics, Inc.

dehnertj@acm.org, stepanov@attlabs.att.com

Copyright © Springer-Verlag. Appears in Lecture Notes in Computer Science 1 9 92
(LNCS) volume 1766. See http://www springer.de/comp/Incs/index.html .

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

“We call the set of axioms
satisfied by a data type and a set
of operations on it a concept.”
- Fundamentals of Generic
Programming

> > > > - > > > > > > > > > > > > >

>

> > > b > > B> B> B> B> B> B> > b > B> b > b

> > > b > > > > > b > b > B> b b > b D

> b
> D

> > b b b b
>b>b>bbb

> > b b > b b b b
>>b>b>bDbBDbDBD

> D
> b
> D
>

>

>D>b>b>D>DDDDBDBDBDBDDR
>>D>DbDbBDDBDBDBDBDBDBDDBD
> > > > D> B> B> DB DB DB DB Db D
> > > > > > > 5> 5> 5> b5 55> 5> 5> 5> 5> >

>

>D> D
> D> D> D
> > > b

-

> > > b > > B> B> > B> B> > B> b > B> b > b

-

> > > > > > > >

> > > > >

> > > > >

Concepts

= Associate semantics & complexity with syntax

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Concepts

= Associate semantics & complexity with syntax

= Defines a component that will work for any type satisfying the requirements

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Concepts

= Associate semantics & complexity with syntax

= Defines a component that will work for any type satisfying the requirements

- Assign meaning to an unbounded set of operations

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Concepts

Associate semantics & complexity with syntax

Defines a component that will work for any type satisfying the requirements

Assign meaning to an unbounded set of operations

An argument is required to satisfy a concept

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Concepts

Associate semantics & complexity with syntax

= Defines a component that will work for any type satisfying the requirements
= Assign meaning to an unbounded set of operations

= An argument is required to satisfy a concept

= A data type or operation may guarantee it is able to satisfy a concept

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Requirements vs Guarantees

= A requirement applies to the arguments of a type or operation consisting of required:

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Requirements vs Guarantees

= A requirement applies to the arguments of a type or operation consisting of required:

= Valid expressions

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Requirements vs Guarantees

= A requirement applies to the arguments of a type or operation consisting of required:
= Valid expressions

= Preconditions

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Requirements vs Guarantees

= A requirement applies to the arguments of a type or operation consisting of required:

= Valid expressions
= Preconditions

= Semantics

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Requirements vs Guarantees

= A requirement applies to the arguments of a type or operation consisting of required:

= Valid expressions
= Preconditions

= Semantics

= A guarantee applies to an instance of an object:

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Requirements vs Guarantees

= A requirement applies to the arguments of a type or operation consisting of required:

= Valid expressions
= Preconditions
= Semantics
= A guarantee applies to an instance of an object:

» Asserting such an instance satisfies a requirement (or models a concept)

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Requirements

« distance(d, 1) requires:

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Requirements

« distance(d, 1) requires:

= fand1satisfy Inputlterators

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Requirements

« distance(d, 1) requires:
= fand1satisfy Inputlterators

= preincrement, ++i, postincrement, (void)i++, and postincrement and dereference, *i++

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Requirements

« distance(d, 1) requires:
= fand1satisfy Inputlterators
= preincrement, ++i, postincrement, (void)i++, and postincrement and dereference, *i++

= precondition:i =1

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Requirements

« distance(d, 1) requires:
= fand1satisfy Inputlterators
= preincrement, ++i, postincrement, (void)i++, and postincrement and dereference, *i++
= precondition: i =1

« fand1satisfy Triviallterator

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Requirements

« distance(d, 1) requires:
= fand1satisfy Inputlterators
= preincrement, ++i, postincrement, (void)i++, and postincrement and dereference, *i++
= precondition: i =1
« fand1satisfy Triviallterator

= fand 1satisfy Assignable, EqualityComparable, DefaultConstructible

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Requirements

« distance(d, 1) requires:
= fand1satisfy Inputlterators
= preincrement, ++i, postincrement, (void)i++, and postincrement and dereference, *i++
= precondition: i =1
« fand1satisfy Triviallterator
= fand 1satisfy Assignable, EqualityComparable, DefaultConstructible

= EqualityComparable precondition: arguments are in the domain of ==

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Requirements

« distance(d, 1) requires:
= fand1satisfy Inputlterators
= preincrement, ++i, postincrement, (void)i++, and postincrement and dereference, *i++
= precondition: i =1
« fand1satisfy Triviallterator
= fand 1satisfy Assignable, EqualityComparable, DefaultConstructible
= EqualityComparable precondition: arguments are in the domain of ==

= precondition: [f, 1) is a valid range

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Requirements

- Naming the set of requirements is a significant simplification

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Requirements

- Naming the set of requirements is a significant simplification

» The concept std::input_iterator encapsulates a complex set of syntactic and semantic
requirements

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Requirements

- Naming the set of requirements is a significant simplification

» The concept std::input_iterator encapsulates a complex set of syntactic and semantic
requirements

= Only the syntactic requirements are enforced by the compiler but analyzers and sanitizers can
validate some of the semantic requirements

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Requirements

- Naming the set of requirements is a significant simplification

» The concept std::input_iterator encapsulates a complex set of syntactic and semantic
requirements

= Only the syntactic requirements are enforced by the compiler but analyzers and sanitizers can
validate some of the semantic requirements

= Concepts in the standard are requirements of the arguments to the library components

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Requirements

- Naming the set of requirements is a significant simplification

» The concept std::input_iterator encapsulates a complex set of syntactic and semantic
requirements

= Only the syntactic requirements are enforced by the compiler but analyzers and sanitizers can
validate some of the semantic requirements

= Concepts in the standard are requirements of the arguments to the library components

= Not requirements of the implementation of the standard types

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Requirements

- Naming the set of requirements is a significant simplification

» The concept std::input_iterator encapsulates a complex set of syntactic and semantic
requirements

= Only the syntactic requirements are enforced by the compiler but analyzers and sanitizers can
validate some of the semantic requirements

= Concepts in the standard are requirements of the arguments to the library components
= Not requirements of the implementation of the standard types

= The standard types are often described as guaranteeing they satisfying those requirements

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Concepts

= Named requirements, or concepts, are distilled from:

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Concepts

= Named requirements, or concepts, are distilled from:

= Aset of related components (algorithms or containers)

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Concepts

= Named requirements, or concepts, are distilled from:
= Aset of related components (algorithms or containers)

= A set of common models

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Concepts

= Named requirements, or concepts, are distilled from:
= Aset of related components (algorithms or containers)

= A set of common models

= They create a simple way to match data types to components and know the result will work correctly

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Concepts

= Named requirements, or concepts, are distilled from:
= Aset of related components (algorithms or containers)

= A set of common models

= They create a simple way to match data types to components and know the result will work correctly

= But for any specific component, some of the requirements may be unnecessary

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Concepts

= Named requirements, or concepts, are distilled from:
= Aset of related components (algorithms or containers)

= A set of common models

= They create a simple way to match data types to components and know the result will work correctly

= But for any specific component, some of the requirements may be unnecessary

= The purpose is not to specify the implementation but to specify the meaning

h‘ Adobe © 2021 Adobe. All Rights Reserved.

std::find(first, last, value)

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

> > > b > > > > > b > b > B> b b > b D

> > b b b
>>b>bHbH

> D
>
>

> > b b
> D> 5> b

>
>

> > b b b b
>>b>bDbDb

> > b
> > b

>
>
>

> b
> >

>D>b>b>D>DDDDBDBDBDD
>>b>DbDbBDBDBD>DBDD
> > > > D> b B> b b b

> > > > > > > 5> 5> 5> b5 55> 5> 5> 5> 5> >

>

>D> D
> D> D> D
> > > b

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

Meaning of Equality

- Two objects are equal iff they represent the same entity (i.e, have the same value)

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Meaning of Equality

- Two objects are equal iff they represent the same entity (i.e, have the same value)

- Equality is an equivalence relation

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Meaning of Equality

- Two objects are equal iff they represent the same entity (i.e, have the same value)

- Equality is an equivalence relation

Va a=a (reflexive)
Va,b a=b< b=a (symmetric)
Ya,b,c (a=bAb=c)=— a=c (transitive)

h‘ Adobe

© 2021 Adobe. All Rights Reserved.

Meaning of Equality

- Two objects are equal iff they represent the same entity (i.e, have the same value)

- Equality is an equivalence relation
Va a=a (reflexive)

Va,b a=b< b

Ya,b,c (a=bAb=c)=— a

(symmetric)

|
Q

C (transitive)

- Consistent with other operations on the type

h‘ Adobe

© 2021 Adobe. All Rights Reserved.

Meaning of Equality

- Two objects are equal iff they represent the same entity (i.e, have the same value)

- Equality is an equivalence relation

Va a=a (reflexive)
Va,b a=b< b=a (symmetric)
Ya,b,c (a=bAb=c)=— a=c (transitive)
- Consistent with other operations on the type

Va,b b—-a=— a=0>b (equivalence of copies)
Va,b atbAbLta< a=0b>b (excluded middle)

h‘ Adobe

© 2021 Adobe. All Rights Reserved.

SGI STL std::find() documentation

template<class Inputlterator, class EqualityComparable>
InputIterator find(InputIterator first, InputIterator last,
const EqualityComparable& value);

Requirements on types

» EqualityComparable is a model of EqualityComparable.

* Inputlterator is a model of Inputlterator.

* Equality 1s defined between objects of type EqualityComparable and objects of Inputlterator's value type.
Preconditions

e [first, last) isa valid range.
Complexity

Linear: at most last - first comparisons for equality.

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

https://www.boost.org/sgi/stl/InputIterator.html
https://www.boost.org/sgi/stl/EqualityComparable.html
https://www.boost.org/sgi/stl/EqualityComparable.html
https://www.boost.org/sgi/stl/InputIterator.html

SGI STL EqualityComparable documentation

Expression semantics

Name | Expression Precondition

Equality [x ==y x and y are in the domain of ==
Invariants

Identity &x == &y implies x ==

Reflexivity X == X

Symmetry |x == yimpliesy ==

Transitivity (x yvandy == z impliesx == z

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

C++20 std::find() specification (25.6.5)

template<class Inputlterator, class T>
constexpr Inputlterator find(Inputlterator first, Inputlterator last,
const T& wvalue);

Let E be:
e *1 == value for £find;

Returns: The first iterator i in the range [first, last) for which £ 1s t rue. Returns 1last if no
such iterator 1s found.

h‘ Adobe © 2021 Adobe. All Rights Reserved.

https://eel.is/c++draft/alg.find#2.sentence-1
https://eel.is/c++draft/alg.find#2.sentence-2

C++20 Cpp17EqualityComparable requirements

Table 27: Cppl7EqualityComparable requirements [tab:cppl7.equalitycomparable]

Expression Return type Requirement
a == convertible to bool == is an equivalence relation, that is, it has the
following properties:
— Forall 3,a ==a.
— Ifa==b,then b==a.
— Ifa==bandb==c,thena==c.

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

http://www.eel.is/c++draft/utility.arg.requirements#tab:cpp17.equalitycomparable
http://www.eel.is/c++draft/tab:cpp17.equalitycomparable

NaN refresher - a value which is not equality comparable

» nan(“”) is typically generated by 0.0/0.0

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

NaN refresher - a value which is not equality comparable

= nan(*”) is typically generated by 0.0/0.0

- nan(“”) ==nan(“”) is false (irreflexive)

h‘ Adobe © 2021 Adobe. All Rights Reserved.

NaN refresher - a value which is not equality comparable

= nan(*”) is typically generated by 0.0/0.0
- nan(“”) ==nan(“”) is false (irreflexive)

« nan(“”) does not satisfy the requirements of EqualityComparable or Cpp17EqualityComparable

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Find Without Equality

double all{ 0.8, 7.0, nan(""), 3.0, 2.4 };

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Find Without Equality

double all{ 0.8, 7.0, nan(""), 3.0, 2.4 };

auto p = find(begin(a), end(a), nan(""));

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Find Without Equality

double all{ 0.8, 7.0, nan(""), 3.0, 2.4 };

auto p = find(begin(a), end(a), nan(""));

if (p ==
cout
} else {
cout

¥

I\ Adobe

end(a)) {

<< "not-found\n";

<< "found:

<< *p << "\n";

© 2021 Adobe. All Rights Reserved.

Find Without Equality

double all{ 0.8, 7.0, nan(""), 3.0, 2.4 };

auto p = find(begin(a), end(a), nan(""));

if (p ==
cout
} else {
cout
}

I\ Adobe

end(a)) {

<< "not-found\n";

<< "found:

<< *p << "\n";

not-found

© 2021 Adobe. All Rights Reserved.

Find Without Equality

double all{ 0.8, 7.0, nan(""), 3.0, 2.4 };

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Find Without Equality

double all{ 0.8, 7.0, nan(""), 3.0, 2.4 };

auto p = find(begin(a), end(a), 3.0);

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Find Without Equality

double all{ 0.8, 7.0, nan(""), 3.0, 2.4 };

auto p = find(begin(a), end(a), 3.0);

if (p ==
cout
} else {
cout

¥

I\ Adobe

end(a)) {

<< "not-found\n";

<< "found:

<< *p << "\n";

© 2021 Adobe. All Rights Reserved.

Find Without Equality

double all{ 0.8, 7.0, nan(""), 3.0, 2.4 };
auto p = find(begin(a), end(a), 3.0);
if (p == end(a)) {

cout << "not-found\n";

} else {
cout << "found: " << xp << "\n";
¥

found: 3

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Problem Statement

an d a
Given a sequence of fractions b—o, b—l, .. .b—n, find the first fraction such that a, = xbp.
0 1 n

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Problem Statement

an d a
Given a sequence of fractions b—o, b—l, .. .b—n, find the first fraction such that a, = xbp.
0 1 n

double al]l{4.0/5.0, 7.0/1.0, 0.0/0.0, 9.0/3.0, 12.0/5.0};

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Problem Statement

a, a a
Given a sequence of fractions b—o, b—l, .. .b—n, find the first fraction such that a, = xbp.
0 1 n

double al]l{4.0/5.0, 7.0/1.0, 0.0/0.0, 9.0/3.0, 12.0/5.0};

double x

= 3.0;
auto p = find(begin(a), end(a), Xx);

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

A Subtle Change...

» If std::find () required Cpp17EqualityComparable, the following code would be undefined behavior:

h‘ Adobe © 2021 Adobe. All Rights Reserved.

A Subtle Change...

» If std::find () required Cppl7EqualityComparable, the following code would be undefined behavior:

double al] { 0.8, 7.0, 42.3, 3.0, 2.4 };

auto p = find(begin(a), end(a), 3.0);

h‘ Adobe © 2021 Adobe. All Rights Reserved.

A Subtle Change...

» If std::find () required Cpp17EqualityComparable, the following code would be undefined behavior:

double al] { 0.8, 7.0, 42.3, 3.0, 2.4 };

auto p = find(begin(a), end(a), 3.0);

= The above code is well defined with the SGI definition of EqualityComparable

h‘ Adobe © 2021 Adobe. All Rights Reserved.

SGI STL EqualityComparable documentation

Expression semantics

Name | Expression Precondition

Equality [x ==y x and y are in the domain of ==
Invariants

Identity &x == &y implies x ==

Reflexivity X == X

Symmetry |x == yimpliesy ==

Transitivity (x yvandy == z impliesx == z

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

SGI STL EqualityComparable documentation

Precondition

x and y are in the domain of ==

h‘ Adobe © 2021 Adobe. All Rights Reserved.

C++20 Cpp17EqualityComparable requirements

Table 27: Cppl7EqualityComparable requirements [tab:cppl7.equalitycomparable]

Expression Return type Requirement
a == convertible to bool == is an equivalence relation, that is, it has the
following properties:
— Forall 3,a ==a.
— Ifa==b,then b==a.
— Ifa==bandb==c,thena==c.

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

http://www.eel.is/c++draft/utility.arg.requirements#tab:cpp17.equalitycomparable
http://www.eel.is/c++draft/tab:cpp17.equalitycomparable

The term domain of the operation is used in the ordinary
mathematical sense to denote the set of values over which an
operation is (required to be) defined. This set can change over time.
Each component may place additional requirements on the domain
of an operation. These requirements can be inferred from the uses
that a component makes of the operation and are generally
constrained to those values accessible through the operation's
arguments.

F\\ Adobe © 2021 Adobe. All Rights Reserved.

Domain of the Operation

= The domain of an operation is not the types of the arguments

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Domain of the Operation

= The domain of an operation is not the types of the arguments

= For atype, T, to satisfy a requirement, P:

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Domain of the Operation

= The domain of an operation is not the types of the arguments
= For atype, T, to satisfy a requirement, P:

Vay...a, P(ay...qa,)

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Domain of the Operation

= The domain of an operation is not the types of the arguments
= For atype, T, to satisfy a requirement, P:
Vay...a, P(ay...qa,)

« T'must guarantee that

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Domain of the Operation

= The domain of an operation is not the types of the arguments
= For atype, T, to satisfy a requirement, P:

Vay...a, P(ay...qa,)
» T 'must guarantee that

day...a, € T 2 P(a,...qa,)

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Domain of the Operation

= The domain of an operation is not the types of the arguments
= For atype, T, to satisfy a requirement, P:

Vay...a, P(ay...qa,)
» T 'must guarantee that

day...a, € T 2 P(a,...qa,)

= double and float satisfy EqualityComparable

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Domain of the Operation

= The domain of an operation is not the types of the arguments
= For atype, T, to satisfy a requirement, P:
Vay...a, P(ay...qa,)
» T 'must guarantee that
day...a, € T 2 P(a,...qa,)
= double and float satisfy EqualityComparable

= So long as nan is not in the set being compared

h‘ Adobe © 2021 Adobe. All Rights Reserved.

Domain of the Operation

= The domain of an operation is not the types of the arguments
= For atype, T, to satisfy a requirement, P:
Vay...a, P(ay...qa,)
» T 'must guarantee that
day...a, € T 2 P(a,...qa,)
= double and float satisfy EqualityComparable

= So long as nan is not in the set being compared

= The absence of nan in the sequence for find() is a precondition

h‘ Adobe © 2021 Adobe. All Rights Reserved.

std::find() is broken in C++20

« std::find() doesn't require that there exist any equality comparable values in T

h‘ Adobe © 2021 Adobe. All Rights Reserved.

std::find() is broken in C++20

« std::find() doesn't require that there exist any equality comparable values in T

» std::find() doesn't guarantee that it finds value, even if value exists in the sequence

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

std::find() is broken in C++20

« std::find() doesn't require that there exist any equality comparable values in T
» std::find() doesn't guarantee that it finds value, even if value exists in the sequence

» The meaning of std::find () is reduced to works-as-implemented

h‘ Adobe © 2021 Adobe. All Rights Reserved.

std::find() is broken in C++20

« std::find() doesn't require that there exist any equality comparable values in T

» std::find() doesn't guarantee that it finds value, even if value exists in the sequence

» The meaning of std::find () is reduced to works-as-implemented

» Fortunately, it is trivial to show that iff operator==() models EqualityComparable

h‘ Adobe © 2021 Adobe. All Rights Reserved.

std::find() is broken in C++20

« std::find() doesn't require that there exist any equality comparable values in T

» std::find() doesn't guarantee that it finds value, even if value exists in the sequence

» The meaning of std::find () is reduced to works-as-implemented
» Fortunately, it is trivial to show that iff operator==() models EqualityComparable

= And all values in the sequence and the value being sought are in the domain of ==

h‘ Adobe

© 2021 Adobe. All Rights Reserve

std::find() is broken in C++20

« std::find() doesn't require that there exist any equality comparable values in T

» std::find() doesn't guarantee that it finds value, even if value exists in the sequence
» The meaning of std::find () is reduced to works-as-implemented

» Fortunately, it is trivial to show that iff operator==) models EqualityComparable

= And all values in the sequence and the value being sought are in the domain of ==

= Then std::find () will find

h‘ Adobe

© 2021 Adobe. All Rights Reserve

“Understanding why software
fails is important, but the real
challenge is understanding why
software works.”

- Alexander Stepanov

> > > > - > > > > > > > > > > > > >

>

> > > b > > B> B> B> B> B> B> > b > B> b > b

> > > b > > > > > b > b > B> b b > b D

> b
> D

> > b b b b
>b>b>bbb

> > b b > b b b b
>>b>b>bDbBDbDBD

> D
> b
> D
>

>

>D>b>b>D>DDDDBDBDBDBDDR
>>D>DbDbBDDBDBDBDBDBDBDDBD
> > > > D> B> B> DB DB DB DB Db D
> > > > > > > 5> 5> 5> b5 55> 5> 5> 5> 5> >

>

>D> D
> D> D> D
> > > b

-

> > > b > > B> B> > B> B> > B> b > B> b > b

-

> > > > > > > >

> > > > >

> > > > >

Weakening Requirements

Correct

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

Weakening Requirements

I\ Adobe

Correct

© 2021 Adobe. All Rights Reserved.

“I work with very good
programmers and | see a ton of
happens-to-work and very little
actually correct.”

— Titus Winters

> > > > - > > > > > > > > > > > > >

>

> > > b > > B> B> B> B> B> B> > b > B> b > b

> > > b > > > > > b > b > B> b b > b D

> b
> D

> > b b b b
>b>b>bbb

> > b b > b b b b
>>b>b>bDbBDbDBD

> D
> b
> D
>

>

>D>b>b>D>DDDDBDBDBDBDDR
>>D>DbDbBDDBDBDBDBDBDBDDBD
> > > > D> B> B> DB DB DB DB Db D
> > > > > > > 5> 5> 5> b5 55> 5> 5> 5> 5> >

>

>D> D
> D> D> D
> > > b

-

> > > b > > B> B> > B> B> > B> b > B> b > b

-

> > > > > > > >

> > > > >

> > > > >

What You Can Do

- After trial-&-error, Stack Overflow, and Googling maybe you have code that happens-to-work

h‘ Adobe © 2021 Adobe. All Rights Reserved.

What You Can Do

- After trial-&-error, Stack Overflow, and Googling maybe you have code that happens-to-work

= Take the time to read the specification

'&‘ Adobe © 2021 Adobe. All Rights Reserved.

What You Can Do

- After trial-&-error, Stack Overflow, and Googling maybe you have code that happens-to-work
= Take the time to read the specification

= Lookup anything you aren't clear about

h‘ Adobe © 2021 Adobe. All Rights Reserved.

What You Can Do

- After trial-&-error, Stack Overflow, and Googling maybe you have code that happens-to-work

= Take the time to read the specification
= Lookup anything you aren't clear about

= Ask specific questions of experts

h‘ Adobe © 2021 Adobe. All Rights Reserved.

What You Can Do

- After trial-&-error, Stack Overflow, and Googling maybe you have code that happens-to-work

= Take the time to read the specification
= Lookup anything you aren't clear about
= Ask specific questions of experts

» Clever uses require additional validation

h‘ Adobe © 2021 Adobe. All Rights Reserved.

What You Can Do

- After trial-&-error, Stack Overflow, and Googling maybe you have code that happens-to-work
= Take the time to read the specification

= Lookup anything you aren't clear about

= Ask specific questions of experts
» Clever uses require additional validation

» Think about the meaning, the semantics, of your code

h‘ Adobe © 2021 Adobe. All Rights Reserved.

What You Can Do

- After trial-&-error, Stack Overflow, and Googling maybe you have code that happens-to-work
= Take the time to read the specification
= Lookup anything you aren't clear about
= Ask specific questions of experts
» Clever uses require additional validation
» Think about the meaning, the semantics, of your code

= Ensure your use reflects the implied semantics

h‘ Adobe © 2021 Adobe. All Rights Reserved.

What You Can Do

- After trial-&-error, Stack Overflow, and Googling maybe you have code that happens-to-work
» Take the time to read the specification
= Lookup anything you aren't clear about
= Ask specific questions of experts
» Clever uses require additional validation
» Think about the meaning, the semantics, of your code
= Ensure your use reflects the implied semantics

= Ensure your names reflect the semantics of what they represent

h‘ Adobe © 2021 Adobe. All Rights Reserved.

“The gap between code that fails and
code that is correct is vast. Within it
lies all the code that happens-to-
work. Strive to write correct code and
you will write better code.”

- Me, This Talk

> > > b > > B> B> B> B> B> B> > b > B> b > b

> > > b > > > > > b > b > B> b b > b D

> D
> b
> D
>

>

> > b b b
> > 5> b b

> > > > b > D> b b b b
i A A d d A d d d d e

>
>

>D>b>b>D>DDDDBDBDBDBDDR
>>D>DbDbBDDBDBDBDBDBDBDDBD
> > > > D> B> B> DB DB DB DB Db D
> > > > > > > 5> 5> 5> b5 55> 5> 5> 5> 5> >

>

>D> D
> D> D> D
> > > b

-

> > > b > > B> B> > B> B> > B> b > B> b > b

- i I _J -

AR E A X
r e 2 2 e D
>
b

2
%X

B] pL) o YL Y yT L4 4
0 o8 fﬁg"mﬁ'ﬂﬂ’ﬂiﬁmmmm i1 o

48 28 :

e . g-.-:::.':::m:mmmsm.m,-.mu ge2ss

N

25s,

%
28040}

)

Pid:

AR A
® ¥ h>E

g s 48 us
.ﬁ 9t miE g me
S sr:':r::m:%m-.wm::::mn{ DY U L T A T T Y T LT AT
NP I L% AN VRSNV A A

3 2

WAL

LA
1 4

> 4 4 2% ¥:ites

| : : : : a g 2 g .Elits:&xmaattwé’}gwﬁgz .mmm S R TR

'] 2.3 *Hft&!.!tfﬁ;%twﬁ E A .ﬁé’. SRR SRRV A R RN 0085

LSSEAVIRINISNNCOL i | 3 | - &

SOOI EovanesessfiBicncoe tEvsas e e
: s - AR N I I

@ 20 QM S90 () .E
eR3gnitznde:; N
g‘ i v o ¢ F . “"'e{
3

22
f

52
:ﬂﬂﬁ“ _
Sveer2oe Y R IR TR YL IONCRVIN I ININY

I VAR A NAS
E0iFI 073 RAIN

f

e,
SiaRgesea e

EREEL: 13
&

[

?R‘Bﬁ'&‘:’:‘ﬁlbw.ﬂlﬂ&- -

QX FAA R T e il i SPRE LT B Ao FTE R R ALY

.

VAL REIN

OLPAVUI AL ETERI58S
P # 0 8 &

%%):&
£

b
2
$s
& e
< ¢
¢ ¥
Q"
®

>

a
:g‘
s

2 N v 2%

g ; s 8 PR O s T B
' . : s S : . s S & el
oBWesovsssatsass PARE tm? : g B0ssek £a0832200i588%:s

3 ® < 259 o ":’ Tt e .z
[| & 3 S) L 3 ¢ : ‘g.lo Sz'bmr“
® o : {

% 2 8¢
EEEE i 3
R E-ER-INER i

-
2
? Encsvasaypendisnaa

ePL'PR

! grtwgb lﬁmo#@z a
g8 8 % 78

-8
B o 8 & 8 PO WS e 00 o

About the artist

Momomi Sato

Tokyo-based artist Momomi Sato meticulously
applies paint using toothpicks to create fanciful,
pointillistic works of animals, patterns, and other
colorful subjects. With a style that ranges from
abstract to kawaii, Sato’s paintings are as charming as
they are beautiful. For this piece, a train ride
prompted an exploration of systems that influence
daily life. As she stared intently at the pattern on the
seats, the lines and shapes seemed to move and draw
Sato into another dimension. She recreated the

sensation by hand with acrylic paint on canvas.

Jmeeetiiliss s

frooR

