Mmosaic

=1Ll Bloomberg
=021

VIR TUAL EVENT

COMNMABULTANTES TO FINAMCIAL BERVICES

Keynote:
Better Code: Relationships

MAAARL T LT .

~Sean Parent e (R

S eoes

- ’ 2 »
, //45.4'/1 ’ ;&

.....

.'.;o‘b‘° ‘‘‘‘‘‘
s “\"
Y133

™ . .
N \y-

N

Adobe

Better Code: Relationships

Sean Parent | Senior Principal Scientist, Photoshop

S > T\ N
o - D' "'Y’,

N

Adobe

Goal: No Contradictions

#AdobeRemix

Hiroyuki-Mitsume Takahashi

‘A novice sees only the chessmen.
An amateur sees the board.
A master sees the game.
— Unknown

‘Computer scientists are bad at

relationships.”
- Me

N

Adobe

The Pieces
Relationships

\\
A 28
. ' 3“ B oS
' i
/. n] =
/ DR 2
/ ' |
f -
A '{
} '\ =
' 4
'
|

#AdobeRemix

Hiroyuki-Mitsume Takahashi

Relations in Math

* Arelation is a set of ordered pairs mapping entities from a domain to a range

= Distinct from a function in that the first entity does not uniquely determine the second

* A relationship is the way two entities are connected

{(z0,y0), (z1,41), (2,92), ...}

Dredicates

- Arelation implies a corresponding predicate that tests it @ pair exists in the relation

- Ifitis true, the relationship is satisfied or holds

= John is married to Jane

= |s John married to Jane?

Constraints

= A constraint is a relationship which must be satisfied

* For another relationship to be satisfied

= The denominator must not be O for the result of division to be defined

Implication

a=>b

(a 1mplies b) O 0 1
0]]
] 0 0

A simple, but incomplete, notation

- Entities are represented with a rectangle, and relationships with a circle

= This forms a bipartite graph

Entity

R Entity

Entity

A simple notation

* Implication is represented with directional edges

= This is shorthand for given entities b and ¢, a is any entity such that R holds

= Read as, b and cimply @

Relationships and Objects

= As soon as we have two entities we have implicit relationships
= A memory space Is an entity

= When an object is copied or moved, any relationship that object was involved in is either
maintained or severed with respect to the destination object

= When an object is destructed, any relationship that object was involved in is severed

Witnessed Relationships

= A witnessed relationship is a relationship represented by an object
= As an object, a witnessed relationship is copyable and equality comparable

= When an object is copied or moved, any witnessed relationship that object was involved in is
either maintained, severed, or invalidated

= When an object is destructed, any witnessed relationship that object was involved in is either
severed, or invalidated

= We may choose not to implement copy or move for witnessed relationships

= This is how we get iterator invalidation “at a distance”

N

Adobe

The Board

Structures

\\
A 28
. ' 3“ B oS
' i
/. n] =
/ DR 2
/ ' |
f -
A '{
} '\ =
' 4
'
|

#AdobeRemix

Hiroyuki-Mitsume Takahashi

A structure on a set consists of
additional entities that, in some
manner, relate to the set,
endowing the collection with
meaning or significance

——

| This slide intentionally left void]

0100

[hayy)]
(0100

(0011

Memory Space

(010

IR

0011

O
Adobe

Memory Space

(0011

Ei2:££01oo]
0111}

AAAAA

Safety

= An object instance, without meaning, is invalid
= An object in an invalid state, must either be restored to a valid state, or destroyed
= This is related to the idea of a partially formed object

= An operation which leaves an object in an invalid state is unsafe

« std: :move () isan unsafe operation

C+4+20

= Two new features specifically about relationships
= Concepts

= Contracts

© 2019 Adobe. All Rights Reserved.

C+4+20

- FwoeOne new features specifically about relationships

= Concepts
= Contracts

© 2019 Adobe. All Rights Reserved.

Fundamentals of Generic Programming

James C. Dehnert and Alexander Stepanov

Silicon Graphics, Inc.
dehnertj@acm.org, stepanov@attlabs.att.com

Copyright © Springer-Verlag. Appears in Lecture Notes in Computer Science 1 9 9 8
(LNCS) volume 1766. See http://www.springer.de/comp/Incs/index.html .

© 2019 Adobe. All Rights Reserved.

"We call the set of axioms satisfied
Dy 3 data type and a set of
operations on it a concept’

"We call the set of axioms satistied
Dy 3 data type and a set of
operations on it a concept’

An Axiomatic Basis for
Computer Programming

C. A. R. HOARE
The Queen’s Unwversity of Belfast,* Northern Ireland

© 2019 Adobe. All Rights Reserved.

of purely deductive reasoning. Deductive reasoning in-
volves the application of valid rules of inference to sets of
valid axioms. It is therefore desirable and interesting to
elucidate the axioms and rules of inference which underlie
our reasoning about computer programs. The exact choice
of axioms will to some extent depend on the choice of
programming language. For illustrative purposes, this
paper is confined to a very simple language, which is effec-
tively a subset of all current procedure-oriented languages.

2. Computer Arithmetic

The first requirement in valid reasoning about a pro-
gram is to know the properties of the elementary operations
which it invokes, for example, addition and multiplication
of integers. Unfortunately, in several respects computer
arithmetic is not the same as the arithmetie familiar to
mathematicians, and it is necessary to exercise some care
in selecting an appropriate set of axioms. For example, the
axioms displayed in Table I are rather a small selection
of axioms relevant to integers. From this incomplete set

* Department of Computer Science

276 Communications of the ACM

It is interesting to note that the different systems satisfy-
ing axioms Al to A9 may be rigorously distinguished from
each other by choosing a particular one of a set of mutually
exclusive supplementary axioms. For example, infinite
arithmetic satisfies the axiom:

Al10; —3axVy (y < z),
where all finite arithmeties satisfy:
Al0, Vz (x < max)

where “max” denotes the largest integer represented.

Similarly, the three treatments of overflow may be
distinguished by a choice of one of the following axioms
relating to the value of max + 1:

Alls =3z (xr=max+ 1) (strict interpretation)

Ally max + 1 = max (firm boundary)
Ally max + 1 =0 (modulo arithmetic)

Having selected one of these axioms, it is possible to
use it in deduecing the properties of programs; however,

Yolume 12 / Number 10 / October, 1969

1969

-quality

= Two objects are equal iff their values correspond to the same entity

= From this definition we can derive the following properties:

(Va)a = a. (Reflexivity)
(Va,b)a =b= b= a. (Symmetry)
(Va,b,c)a=bANb=c=a=c. (Transitivity)

Concepts

= Axioms follow from the definition
- A collection of connected axioms form an algebraic structure

= Connected type requirements form a concept

© 2019 Adobe. All Rights Reserved.

Copy and Assignment

* Properties of copy and assignment:
b—a=a=10 (copies are equal)
a=b=cNd#a,d—>a=a#bANb=c (copies are disjoint)

= Copy Is connected to equality

Natural Total Order

= The natural total order is a total order that respects the other fundamental operations of the
type
= A total order has the following properties:

(Va, b)exactly one of the following holds:

a<b,b<a,ora=>. (Trichotomy)
(Va,b,c)a <bANb<c=a<ec. (Transitivity)

Natural Total Order

= Example: Integer < is consistent with addition.

(VneZ)n < (n+1).

Concepts

- Quantified axioms are (generally) not actionable

= Concepts in C++20 work by associating semantics with the name of an operation

© 2019 Adobe. All Rights Reserved.

Software is defined on Algebraic Structures

© 2019 Adobe. All Rights Reserved.

- Applying “Design by

Contract”

Bertrand Meyer

Interactive Software Engineering

Reliability is even more
important in object-
oriented programming
than elsewhere. This
article shows how to
reduce bugs by building
software components
on the basis of carefully
designed contracts.

40

* The cornerstone of object-oriented technology is reuse. For reusable compo-
nents, which may be used in thousands of different applications, the potential
consequences of incorrect behavior are even more serious than for apphication-
specific developments.

¢ Proponents of object-oriented methods make strong claims about their bene-
ficial effect on software quality. Reliability is certainly a central component of
any reasonable definition of quality as apphed 1o sofliware.

* The object-oriented approach, based on the theory of abstract data types,
provides a particularly appropriate framework for discussing and enforcing
rehiability.

The pragmatic techniques presented in this article, while certainly not providing
infallible ways to guarantee reliability, may help considerably toward this goal.
Fhey rely on the theory of design by contract, which underlies the design of the
Eiffel analysis, design, and programming language' and of the supporting libraries,
from which a number of examples will be drawn,

The contributions of the work reported below include

o u coherent set of methodological principles helping to produce correct and
robust soltware;

® o systematic approach to the delicate problem of how to deal with abnormal
cases, leading to a simple and powerful exception-handling mechanism: and

IR IR T OnaS a) £ Jus e n (‘()K‘Pl 'TER

1986 (original)

An Axiomatic Basis for
Computer Programming

C. A. R. HOARE
The Queen’s Unwversity of Belfast,* Northern Ireland

© 2019 Adobe. All Rights Reserved.

of purely deductive reasoning. Deductive reasoning in-
volves the application of valid rules of inference to sets of
valid axioms. It is therefore desirable and interesting to
elucidate the axioms and rules of inference which underlie
our reasoning about computer programs. The exact choice
of axioms will to some extent depend on the choice of
programming language. For illustrative purposes, this
paper is confined to a very simple language, which is effec-
tively a subset of all current procedure-oriented languages.

2. Computer Arithmetic

The first requirement in valid reasoning about a pro-
gram is to know the properties of the elementary operations
which it invokes, for example, addition and multiplication
of integers. Unfortunately, in several respects computer
arithmetic is not the same as the arithmetie familiar to
mathematicians, and it is necessary to exercise some care
in selecting an appropriate set of axioms. For example, the
axioms displayed in Table I are rather a small selection
of axioms relevant to integers. From this incomplete set

* Department of Computer Science

276 Communications of the ACM

It is interesting to note that the different systems satisfy-
ing axioms Al to A9 may be rigorously distinguished from
each other by choosing a particular one of a set of mutually
exclusive supplementary axioms. For example, infinite
arithmetic satisfies the axiom:

Al10; —3axVy (y < z),
where all finite arithmeties satisfy:
Al0, Vz (x < max)

where “max” denotes the largest integer represented.

Similarly, the three treatments of overflow may be
distinguished by a choice of one of the following axioms
relating to the value of max + 1:

Alls =3z (xr=max+ 1) (strict interpretation)

Ally max + 1 = max (firm boundary)
Ally max + 1 =0 (modulo arithmetic)

Having selected one of these axioms, it is possible to
use it in deduecing the properties of programs; however,

Yolume 12 / Number 10 / October, 1969

1969

Contracts

« Originally part of the Eitfel language
- Contracts allow the specification of constraints
« Preconditions (require)

- Postconditions (ensure)

= (lass Invariants

Contracts

= Contracts are actionable predicates on values

© 2019 Adobe. All Rights Reserved.

'In some cases, one might want to use
quantified expressions of the form "For
all x of type T, p(x) holds” or “There exists
x of type T, such that p(x) holds,” where p
S 3 certain Boolean property. Such
expressions are not available in Eiffel!

——

Concepts and Contracts

= Concepts describe relationships between operations on a type

= Contracts describe relationships between values

= The distinction is not always clear

* le. The comparison ope
relation over the values

ation passed to std: : sort must implement a strict weak ordering

being sorted

Pattern Matching

= Concepts are used as a compile time constraint to select an appropriate operation

- Contracts assert at runtime if an operations preconditions are not met

A runtime constraint to select an appropriate operation is known as pattern matching

void f(auto i) requires requires {1 !(i1 < @) }
void f(int i) [[expects !(i < 0)]]
void f(int i) requires !'(i < @) // Not yet in C++.

Whole-Part Relationships and Composite Objects

Part A’
* Connected

Part B’

* Noncircular

* Logically Disjoint

* Owning

* Standard Containers are Composite Objects

= Composite objects allow us to reason about a collection of objects as a single entity

Elements of Programming, Chapter 12

© 2019 Adobe. All Rights Reserved. "‘

Adobe

No Incidental Data Structures

class view {
std::1list<std:: view>> children;
f{ VIEWS F

std: :weak radob lew>

/oo

ot

© 2019 Adobe. All Rights Reserved.

No Raw Loops

// Next, check if the panel has moved to the other side of another panel.
const int center_x = fixed_panel->cur_panel center();
for (size t i = 0; 1 < expanded panels .size(); ++i) {
Panelx panel = expanded panels [i].get();
if (center_x <= panel->cur_panel_center() ||

1 == expanded panels_.size() - 1) {
if (panel != fixed_panel) {
// If 1t has, then we reorder the ls.
ref_ptr<Panel> ref = . —
expanded_panels_ erase(expanded o _.begin() + fixed_index);

if (i < expanded panels _.size()) {
expanded panels_.insert(expanded panels .begin() + i, ref);
} else {
expanded_panels_.push_back(ref);
I3
I3
break;
I3
s

© 2019 Adobe. All Rights Reserved.

N

Adobe

The Game

Arcnhitecture

\\
A 28
. ' 3“ B oS
' i
/. n] =
/ DR 2
/ ' |
f -
A '{
} '\ =
' 4
'
|

#AdobeRemix

Hiroyuki-Mitsume Takahashi

Clients

Product

Dependencies

© 2019 Adobe. All Rights Reserved.

Roof

House

ﬂ

Foundation

© 2019 Adobe. All Rights Reserved.

Two adults On child lguana

Walls Utilities Carpet

Lumber Sheet Rock Gravel

© 2019 Adobe. All Rights Reserved.

sUIACENT 1O GRS FIRE

FIRECLAY FLUE
225Smm Dia

YE~T FOR CONBUSTION &R

[
F_?"w. :

P — —

w ——

O

FOR SECURTY aLaflm SYSTEm
HOUSE TO BE HaRD WIRED OmLY

All WINODODWS
NICHT LOCAS 10

1227
R}
0

FIRE

Y

RODOING EYE
Lounge

AA

1227
a
-
©

RaDRTUR

0322
\\

02
' '/ Garaqe

‘

aD. 815
é INSPECTION CAaMALR

w
-~
o

FIRE RESISTANT STUD wall
N0 FENETRATIONS TO HalF HOUR

|
|
890

~

=R
—
—
o ﬁ‘f—m ;cl lr
£

(= éi’ pe |
' el
‘, A4 ' T 9 o 40355
{ |} \ RODDING_ EYE
P frefy| SIWCLE SOCKET
I

g
H
L ?,.
[—
{00
[}
()
i »
x =l
o
—

-
(A
9310

o~
A ‘] ;} |

.
11

h—

P, B

40.34s
MSPECTION CHaMBER
CalT 1RDOn COYER

| /
I ¢
e afjes ________
INSPELTION CHawdER
CasST IRON

R.e.F. HIGH & LOWw.
21501 50mm Fw's

- | |)
HIGH & LOW . RY.P. 1
215215 mm Fal's

AT CLIENTS DISCRESSION a0 B79
GAS anD ELECTRIC #ETERS RECESSED g INSPECTION CHaMBESR

) &) 336
- - - - - - { RCODWE EYE
SINGLE SOCKET

‘_Z

Ve N

SUMMIR NOON SUN SECTION 1 SUMMER

PIOTOVOUTAC ARRAY FASNG SOUTH TOR MAMM SOUAR Doosind
RANWATIR COLLECTION FROM R0OF, PUMPED TO LANDSCAPT AND TORET Ul

HIGH ALBEDO SUSFACE REFLECTS SOULAR HEAT FROM ABSOREING INTO ROOFING MATERAL
OVERANGS AND LIGHT SHELVES SHADOW MIGH SUMMER SUN AND REFRACT INDRECT
LIGHT INTO T INTLIOR

OFEN FLOOR PLAN, CONMICTING POROI, LOW OPERABLE WINDOWS, MGH CLILING FANS
AND OPERABLE CLERESTORY WINDOWS CREATE A CROSS VENTEATION AND STACK EFECT
GRO-THERMAL MEAT PUMP FOR SUPPLEMENTARY COOLING

hed
.-

SECTION 1 WINTER
WIRTON RSN SN

PHOTOVOLTAXC ARRAY FADNG SOUTH FOR MAMUM SOLAR EXPOSURE
RANWATER COLLECTION FROM ROOF , PUMITLD TO LANDSCAN AND TORLET U
SOUAR MEAT GAN FROM LARGE SOUTHERN WNOOWS

G CFUNG FANS ORCULATT HEATED AR THROUGH QLERESTORY SPACK
GEOTHERMAL HEAT PUMP FOR SUSPLEMENTARY HEATING

AV N-

© 2019 Adobe. All Rights Reserved.

© 2019 Adobe. All Rights Reserved.

amodel» Multi-Layered Application

]
VA
Users
T
|
|
|
|
Presentation Layer /\ v
User Presentation
Interface Logic
~
~
~
N
~N

1]

External A
Systems

Services Layer

|
I
I
|
Aly

Cross Cutting /\

] 1
Service Message
Interfaces Types
- X
| \
\
| s \
| / \
/ \

Security

[1

Operational
Management

|

Communication

Business Layer /\ e / :
S ¥ |
- T >t
Application
Facade
s - I h N e e ———
/ | N —
~ d W h \& l
Business Business Business
Workflow Components Entities
| 7
-~
| -
Data Layer /\ Vi -
-~
P -~
l I -~ - g
-
-~
-~
Data Access Service Agents
T |
I |
| |
I l
|V 1V
Data Sources External A
ur Services

© uml-diagrams.org

© 2019 Adobe. All Rights Reserved. 59 "‘

Adobe

© 2019 Adobe. All Rights Reserved.

O
Adobe

N

AN

_.....,%\ \ \ X

!
RN\
o _&{. Ws. X)
..:\\ \ 0‘

0/
¥ QQOQ ’/’,
)RR

{
A

] /
R A

A

.
s
M

© 2019 Adobe. All Rights Reserved.

0N

Adobe

| uva : \/
AVA
k ._ _._EQQQV

d.

© 2019 Adobe. All Rights Reserve

o
v
>
L
()
(%)
)

o
(%)
i}

e

0

(a'd

<
v

0
o

©

<

o

o

(@

©)

initial

foreground background

© 2019 Adobe. All Rights Reserved.

Renderer

Surface Core

visible area changed

Render Coroutine

start

>

Core and Render Coroutines exec synchronously on the
core thread. A single headed arrow between them is
transfer of control, a double headed arrow is a
synchronous function call.

visible area changed (via channel)

>
render forground
< >
set foregrdund layer
< :
yield
<
operation that dirties document N
mark dirty
< >
resume
>
render forground
< >
set foregréund layer
< :
yield
i
resume
e
render background
< >
set backgrbund layer
< _
end
i
Surface Core Render Coroutine

© 2019 Adobe. All Rights Reserved.

woe wirs SWimlanes.io

© 2019 Adobe. All Rights Reserved.

© 2019 Adobe. All Rights Reserved. 67 "‘

Adobe

Architecture is the art and
practice of designing and
constructing structures.

| arge structures are built by
combining smaller structures
which are built by combining
even smaller structures

Task

= Save the document every 5 minutes, after the application has been idle for at least 5 seconds.

© 2019 Adobe. All Rights Reserved.

Task

= Save the document every 5 minutes, after the application has been idle for at least 5 seconds.

© 2019 Adobe. All Rights Reserved.

Task

- Save-the-docurmentevery-Smindtes, after the application has been idle for at least 5 seconds.

© 2019 Adobe. All Rights Reserved.

Task

* After the application has been idle for at least n seconds do something

extern system clock::time point last idle;

volid 1invoke after(system clock::duration, function<void()>);

template <class F> // F is task of the form void()
vold after idle(F task, system clock::duration delay) {
auto when = delay - (system clock::now() - last idle);

if (system clock::duration::zero() < when) {

invoke after(when, [=]{ after idle(task, delay); });
} else {

task();

}

© 2019 Adobe. All Rights Reserved.

Visualizing the

Relationships

= The structure, ignoring the recursion in invoke after!

“last i1dle

now()

delay

when

task

Visualizing the Relationships

= The arguments and dependencies

“last i1dle

when

now()

A4

Visualizing the Relationships

= Two operations

|||||||||||||||||||||||||||

task

last_idle
Now()
delay

Visualizing the Relationships

auto when = delay - (system clock::now() - last idle);

~last i1dle

Now() > when

delay

© 2019 Adobe. All Rights Reserved.

Visualizing the Relationships

auto when = delay - (system clock::now() - last idle);

© 2019 Adobe. All Rights Reserved.

On EXpiration

© 2019 Adobe. All Rights Reserved.

0

remaining

task

On EXpiration

@ > remaining >®

© 2019 Adobe. All Rights Reserved.

On EXpiration

template <class S, class T, class F>
volid on expiration (S scheduler, T timer, F task) {
auto remaining = timer();

if (decltype(remaining){0} < remaining) {
scheduler(remaining, [=] {
on expiration (scheduler, timer, task);
})i
} else {
task();

© 2019 Adobe. All Rights Reserved.

On EXpiration

template <class S, class T, class F>
vold on expiration (S scheduler, T timer, F task) {
auto remaining = timer();

if (decltype(remaining){0} < remaining) {
scheduler(remaining, [=] {
on expiration (scheduler, timer, task);
}) i
} else {
task();

}
}

template <class S, class T, class F>
vold on expiration(S scheduler, T timer, F task) {
scheduler(timer(), [=] { on expiration (scheduler, timer, task); });

}

© 2019 Adobe. All Rights Reserved.

Architecture

= By looking at the structure of the function we can design a better function
= Note that on_expiration has no external dependencies

- Nostd::chrono

- Nostd::function

- Orinvoke afteror last 1idle

= Requirements are the semantics of the operations and the relationship between arguments

Registry

= Aregistry is a container supporting the following operations
= Add an object, and obtain a receipt
= Use the receipt to retrieve the object or remove it

= Operate on the objects in the registry

= Example: signal handler

Registry

template <class T>
class registry {

unordered
size_t _:i_o'-'l
public: f' UEI
auto appe
_map.e€

retur

-

-

vold erase

template <

void for e

for (const auto& e : map)
f(e.second);

© 2019 Adobe. All Rights Reserved.

Russian Coat Check Algorithm

* Receipts are ordered
= (Coats always appended with stub
* Binary search to retrieve coat by matching receipt to stub

- When more than half the slot are empty, compact the coats

= (Coats are always ordered by receipt stubs

= As an additional useful properties coats are always ordered by insertion

Russian Coat Check Algorithm

template <class T>

class registry {
vector<palr<size t, optional<T>>> map;
size t size = 0;
size t 1d = 0;

public:
[/ oo

© 2019 Adobe. All Rights Reserved.

Russian Coat Check Algorithm

auto append(T element) -> size t {
_map.emplace back(i1d, move(element));
++ size;
return 1id++;

© 2019 Adobe. All Rights Reserved.

Russian Coat Check Algorithm

Russian Coat Check Algorithm

« volid erase(size t 1d) {
auto p = lower bound(
begin(map), end(map), 1d,
[] (const auto& a, const auto& b) { return a.first < b;

if (p == end(map) || p->first != id || !p->second) return;

p->second.reset();
-— size;

if (size < (map.size() / 2)) {
_map.erase(remove 1if(begin(map), end(map),

}) i

[] (const auto& e) { return !e.second;

end(map));

© 2019 Adobe. All Rights Reserved.

1)

Russian Coat Check Algorithm

Russian Coat Check Algorithm

Russian Coat Check Algorithm

Russian Coat Check Algorithm

template <typename F>
volid for each(F f) {
for (const auto& e : map) {
if (e.second) f(*e.second);

}
}r

© 2019 Adobe. All Rights Reserved.

© 2019 Adobe. All Rights Reserved.

3000

2500

2000

1500

1000

500

Russian Coat Check Algorithm

reg_unordered_map

ratio (CPU time / Noop time)
Lower is faster

reg_vector

© 2019 Adobe. All Rights Reserved.

3000

2500

2000

1500

1000

500

Russian Coat Check Algorithm

reg_unordered_map

reg_vector

ratio (CPU time / Noop time)
Lower is faster

reg_for_each

Russian Coat Check Algorithm

Allocations

unordered_map

vector

© 2019 Adobe. All Rights Reserved.

Elements

Russian Coat Check Algorithm

Allocations

Elements

Architecture

* Relationships can be exploited for performance

= Understanding the relationship between the cost of operations is important

N

Adobe

Goal: No Contradictions

#AdobeRemix

Hiroyuki-Mitsume Takahashi

Double-entry bookkeeping

= Double-entry bookkeeping is an accounting tool for error detection and fraud prevention

- Relies on the accounting equation

assets = liabilities + equity

= An example of equational reasoning

- Pioneered in the 11th century by the Jewish banking community
Likely developed independently in Korea in the same time period

* In the 14th century, double-entry bookkeeping was adopted by the Medici bank
Credited with establishing the Medici bank as reliable and trustworthy

* Leading to the rise of one of the most powerful family dynasties in history

- Double-entry bookkeeping was codified by Luca Pacioli (the Father of Accounting) in 1494

L uca Pacioli

© 2019 Adobe. All Rights Reserved.

Double-entry bookkeeping

* Every transaction is entered twice, into at least two separate accounts
= There are 5 standard accounts, Assets, Capital, Liabilities, Revenues, and Expenses

= This ensures the mechanical process of entering a transaction is done in two distinct ways

- If the accounting equation is not satisfied, then we have a contradiction

Contradictions

- When two relationships imply the same entity has different values

* Relationships are consistent it they imply the same entity has the same value

Entity

Data Race

= When two or more threads access the same object concurrently and at least one is writing

Object

© 2019 Adobe. All Rights Reserved.

Data Race

= \We can resolve the race with a mutex

= But what does it mean?

T, > R,

M > (Object

© 2019 Adobe. All Rights Reserved.

No Raw Synchronization Primitives

Null Pointer Dereference

= (C++ Specification: dereferencing a null pointer is undefined behavior

UB

Null Pointer Dereference

= (C++ Specification: dereferencing a null pointer is undefined behavior

if (p) p->member();

value 20* > r

© 2019 Adobe. All Rights Reserved.

Null Pointers or Optional Objects

* The graceful handling of nothing as a limit is important
= empty ranges, O, etc.

= Removing sections of code to avoid a crash is likely only moving the contradiction

© 2019 Adobe. All Rights Reserved.

°ro Tip
= Use strong preconditions to move the issue to the caller

void f(type* p) {
[/ oo
if (p) p->member();

ey

© 2019 Adobe. All Rights Reserved.

°ro Tip
= Use strong preconditions to move the issue to the caller

void f(type& p) {
[/ e

p.member () ;

ey

© 2019 Adobe. All Rights Reserved.

Setting a Property

= Two functions setting the same value through a shared pointer

Object

p->set property(value);

// Someplace else...
p->set property(other value);

© 2019 Adobe. All Rights Reserved.

Setting a Property

* Possible meanings:
= Code is redundant

= Different aspects of the same relationship, represented in disparate sections of code
- value 1s a * b when a changes

- other value 1s a * b when b changes
- Difterent, mutually exclusive, relationships with non-local control
= Implied "last in wins” relationship
= An incidental algorithm - property will converge to the correct value
= Property is not a simple property but a stream, trigger, or latch

= Or Itisjust wrong

© 2019 Adobe. All Rights Reserved.

No Raw Pointers

© 2019 Adobe. All Rights Reserved.

Play the Game

= Consider the essential relationships
= Learn to see structure

= Architect code

© 2019 Adobe. All Rights Reserved.

sean-parent.stlab.cc

© 2019 Adobe. All Rights Reserved.

https://sean-parent.stlab.cc

NOtosSNoDpIShiriNg.com

© 2019 Adobe. All Rights Reserved.

https://photoshopishiring.com

