0N

Adobe

Compose This!

#AdobeRemix

Craig Ward

Function Composition

"Function composition is an act or mechanism to combine
simple functions to build more complicated ones.” — Wikipedia

Function Composition

"Function composition is an act or mechanism to combine
simple functions to build more complicated ones.” — Wikipedia

f(g(x))

Category Theory

- The study of how objects with morphisms (functions) compose

= (ategory Theory ignores complexity

= There may be multiple ways to compose a function with different efficiency tradeoffs

STL Composition

© 2019 Adobe. All Rights Reserved.

STL Composition

© 2019 Adobe. All Rights Reserved.

STL Composition

© 2019 Adobe. All Rights Reserved.

STL Composition

© 2019 Adobe. All Rights Reserved.

STL Composition

stable_partition(p, 1, s)

© 2019 Adobe. All Rights Reserved.

STL Composition

stable_partition(p, 1, s)

© 2019 Adobe. All Rights Reserved.

STL Composition

stable partition(f, p, not_fn(s))

© 2019 Adobe. All Rights Reserved.

STL Composition

stable partition(f, p, not_fn(s))

© 2019 Adobe. All Rights Reserved.

STL Composition

stable partition(f, p, not_fn(s))
stable_partition(p, 1, s)

< p —

© 2019 Adobe. All Rights Reserved.

STL Composition

stable partition(f, p, not_fn(s))
stable_partition(p, 1, s)

< p —

© 2019 Adobe. All Rights Reserved.

STL Composition

stable partition(f, p, not_fn(s))
< stable_partition(p, 1, s)

© 2019 Adobe. All Rights Reserved.

STL Composition

return { stable_partition(f, p, not_fn(s)),
-< stable_partition(p, 1, s) };

© 2019 Adobe. All Rights Reserved.

STL Composition

© 2019 Adobe. All Rights Reserved.

template <typename I, // I models Bidirectionallterator
typename S> // S models UnaryPredicate
auto gather(I f, I 1, I p, S s) — pair<I, I>
{
return { stable_partition(f, p, not_fn(s)),
stable _partition(p, 1, s) };

STL Composition

< p —

© 2019 Adobe. All Rights Reserved.

template <typename I, // I models Bidirectionallterator
typename S> // S models UnaryPredicate
auto gather(I f, I 1, I p, S s) — pair<I, I>
{
return { stable_partition(f, p, not_fn(s)),
stable _partition(p, 1, s) };

STL Composition

© 2019 Adobe. All Rights Reserved.

template <typename I, // I models Bidirectionallterator
typename S> // S models UnaryPredicate
auto gather(I f, I 1, I p, S s) — pair<I, I>
{
return { stable_partition(f, p, not_fn(s)),
stable _partition(p, 1, s) };

Lazy Gather (with Range v3)

© 2019 Adobe. All Rights Reserved.

Lazy Gather (with Range v3)

© 2019 Adobe. All Rights Reserved.

Lazy Gather (with Range v3)

L(d)e»im | 4

© 2019 Adobe. All Rights Reserved.

template <class R, // R models forward_range
class S> // S models predicate
auto partition(R&& r, S s) {
return make_tuple(r | filter(s), r | remove_if(s));
I3

auto [a, bl = partition(r | take(p), s);

Lazy Gather (with Range v3)

© 2019 Adobe. All Rights Reserved.

<

template <class R, // R models forward_range

class S> // S models predicate

auto partition(R&& r, S s) {

}

return make_tuple(r | filter(s), r | remove_if(s));

auto [a, bl = partition(r | take(p), s);

Lazy Gather (with Range v3)

template <class R, // R models forward_range
class S> // S models predicate
auto partition(R&& r, S s) {
return make_tuple(r | filter(s), r | remove_if(s));
I3

partition(r | take(p), s);
partition(r | drop(p), s);

auto [a, b]
auto [c, d]

(d)ydoup | 4

© 2019 Adobe. All Rights Reserved.

Lazy Gather (with Range v3)

© 2019 Adobe. All Rights Reserved.

template <class R, // R models forward_range
class S> // S models predicate
auto partition(R&& r, S s) {
return make_tuple(r | filter(s), r | remove_if(s));
I3

partition(r | take(p), s);
partition(r | drop(p), s);

auto [a, b]
auto [c, d]

Lazy Gather (with Range v3)

© 2019 Adobe. All Rights Reserved.

template <class R, // R models forward_range
class S> // S models predicate

auto partition(R&& r, S s) {
return make_tuple(r | filter(s), r | remove_if(s));
}

partition(r | take(p), s);
partition(r | drop(p), s);
ble(b, concat(a, c), d);

auto [a, D]
auto [c, d]
return make_

—+ 1l
c

Lazy Gather (with Range v3)

© 2019 Adobe. All Rights Reserved.

<

template <class R,

// R models forward_range

class S> // S models predicate
auto partition(R&& r, S s) {

return make_tuple(r | filter(s), r | remove_if(s));

}

auto [a, D]
auto [c, d]
return make_

—+ 1l

partition(r | take(p), s);
partition(r | drop(p), s);

ble(b, concat(a, c), d);

Lazy Gather (with Range v3)

g

|
|

A

[-(3 ‘e)3jeduod

A

© 2019 Adobe. All Rights Reserved.

template <class R, // R models forward_range
class S> // S models predicate
auto partition(R&& r, S s) {
return make_tuple(r | filter(s), r | remove_if(s));
I3

partition(r | take(p), s);
partition(r | drop(p), s);
ble(b, concat(a, c), d);

auto [a, D]
auto [c, d]
return make_

—+ 1l
c

Lazy Gather (with Range v3)

g

|
|

A

[-(3 ‘e)1eduod

A

© 2019 Adobe. All Rights Reserved.

template <class R, // R models forward_range
class S> // S models predicate
auto partition(R&& r, S s) {
return make_tuple(r | filter(s), r | remove_if(s));
I3

template <class R, // R models forward_range
class S> // S models predicate
auto gather(R&& r, size t p, S s) {
auto [a, bl = partition(r | take(p), s);
auto [c, d] = partition(r | drop(p), s);
return make_tuple(b, concat(a, c), d);

‘Surprisingly less bad than | expected!” — Me

'STL Doesn't Compose’

= Can'ttie an output iterator to an input iterator

'STL Doesn't Compose’

= Can'ttie an output iterator to an input iterator

auto odd _even n(size t n) {
vector<int> v;
generate _n(back_inserter(v), n, [_n = 0]() mutable { return _n++; });
vector<int> rl, r2;
partition_copy(begin(v), end(v), back_inserter(rl), back_inserter(r2),

[1(const auto& e) { return e & 1; });
return make_tuple(rl, r2);

© 2019 Adobe. All Rights Reserved.

Surprisingly less bad than you might expect!

Compositional Efficiency

- Atheory of cost of composition categorized by

Compositional Efficiency

- Atheory of cost of composition categorized by

* Object attributes

Compositional Efficiency

- Atheory of cost of composition categorized by

* Object attributes

= operation

Compositional Efficiency

- Atheory of cost of composition categorized by
* Object attributes

= operation

= 3lgorithms

Compositional Efficiency

- Atheory of cost of composition categorized by
* Object attributes
= operation

= 3lgorithms

- result form (i.e. in-sity, lazy, copy)

Compositional Cost

© 2019 Adobe. All Rights Reserved.

Compositional Cost

= Compositional Cost of a function call is defined to be 1

Compositional Cost

= Compositional Cost of a function call is defined to be 1

= Compositional Cost of operation written in the most efficient form as a single function is 0

Compositional Cost

= Compositional Cost of a function call is defined to be 1

= Compositional Cost of operation written in the most efficient form as a single function is 0

= Cost may be parameterized

Compositional Cost

= Compositional Cost of a function call is defined to be 1
= Compositional Cost of operation written in the most efficient form as a single function is 0

= Cost may be parameterized

* j.e 3 virtual function call for every element might have a compositional cost of 12N

Compositional Cost

= Compositional Cost of a function call is defined to be 1
= Compositional Cost of operation written in the most efficient form as a single function is 0
= Cost may be parameterized

* j.e 3 virtual function call for every element might have a compositional cost of 12N

* Important for polymorphic values, asynchronous operations

Compositional Cost

= Compositional Cost of a function call is defined to be 1
= Compositional Cost of operation written in the most efficient form as a single function is 0
= Cost may be parameterized

* j.e 3 virtual function call for every element might have a compositional cost of 12N

* Important for polymorphic values, asynchronous operations

« Cost is time, not number of operations, and considers cache effects and scale

Compositional Cost

= Compositional Cost of a function call is defined to be 1
= Compositional Cost of operation written in the most efficient form as a single function is 0
= Cost may be parameterized

* j.e 3 virtual function call for every element might have a compositional cost of 12N

* Important for polymorphic values, asynchronous operations

« Cost is time, not number of operations, and considers cache effects and scale

= Goal is to be able to predict the most efficient approach to solve a given problem

N

Adobe

MAKE ITAN EXPERIENCE

