
© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Better Code
Sean Parent | Principal Scientist

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Better Code

▪ Regular Types
▪ Goal: No Incomplete Types
▪ Algorithms
▪ Goal: No Raw Loops
▪ Data Structures
▪ Goal: No Incidental Data Structures
▪ Runtime Polymorphism
▪ Goal: No Inheritance
▪ Concurrency
▪ Goal: No Raw Synchronization Primitives

http://sean-parent.stlab.cc/papers-and-presentations

2

http://sean-parent.stlab.cc/papers-and-presentations

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

The Knowledge

© 2016 Adobe Systems Incorporated. All Rights Reserved. 4

© 2016 Adobe Systems Incorporated. All Rights Reserved. 4

© 2016 Adobe Systems Incorporated. All Rights Reserved. 5

© 2016 Adobe Systems Incorporated. All Rights Reserved. 5

© 2016 Adobe Systems Incorporated. All Rights Reserved. 6

© 2016 Adobe Systems Incorporated. All Rights Reserved. 6

© 2016 Adobe Systems Incorporated. All Rights Reserved. 7

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Key to lines

Metropolitan

Victoria

Circle

Central

Bakerloo

DLR

London Overground

TfL Rail

Piccadilly

Waterloo & City

Jubilee

Hammersmith & City

Northern

District

District open weekends and on
some public holidays

Emirates Air Line

Check before you travel
§ Services to/from some stations are subject
 to variation. Please search ‘TfL stations’
 for full details

§ Caledonian Road
 Station closed temporarily from Spring 2016.

§ Holland Park
 Station closed from Saturday 2 January until
 early August 2016.

§ Paddington
 Bakerloo line trains will not stop at this station
 from Saturday 2 April until early August 2016.

§ Tufnell Park
 Station closed until mid-March 2016.

 Transport for London January 2016

Key to symbols Explanation of zones

1

3

4
5

6

2

7

8

9

Station in both zones

Station in both zones

Station in both zones

Station in Zone 9

Station in Zone 6

Station in Zone 5

Station in Zone 3
Station in Zone 2

Station in Zone 1

Station in Zone 4

Station in Zone 8

Station in Zone 7

Interchange stations

Step-free access from street to train

Step-free access from street to platform

National Rail

Riverboat services

Airport

Victoria Coach Station

Trams

Emirates Air Line

A

B

C

D

E

F

1 2 3 4 5 6 7 8 9

1 2 3 4 5 76 8 9

A

B

C

D

E

F

2 2/3
4

3

52
2

2

5

8 8 6 8

2

4

4

6
5

9

1

3
2

4

3

5

3

3

1

1

3

3

5 79 7 7Special fares apply Special fares
apply

5

4

4

46

6

River Thames

Regent’s Park

Goodge
StreetBayswater

Warren Street

Aldgate

Farringdon

Barbican

Russell
Square

High Street Kensington

Old Street

Green Park

Baker
Street

Notting
Hill Gate

Victoria

Mansion House

Temple

Oxford
Circus

Bond
Street

Tower
Hill

Westminster

Piccadilly
Circus

Charing
Cross

Holborn

Tower
Gateway

Monument

Moorgate

Leicester Square
St. Paul’s

Hyde Park Corner

Knightsbridge

Angel

Queensway

Marble Arch

South
Kensington

Sloane
Square

Covent Garden

Liverpool
Street

Great Portland
Street

Bank

Chancery Lane

Lancaster
GateHolland

Park

Cannon Street

Fenchurch Street

Gloucester
Road St. James’s

Park

Euston
SquareEdgware

Road

Edgware Road

Embankment

Blackfriars

Tottenham
Court Road

King’s Cross
St. Pancras

MarylebonePaddington

Watford High Street

Watford Junction

Bushey

Carpenders Park

Hatch End

North Wembley

South Kenton

Kenton

Wembley Central

Kensal Green

Queen’s Park

Stonebridge Park

Bethnal Green

Cambridge Heath

London Fields

Harlesden

Willesden Junction

Headstone Lane

Harrow &
Wealdstone

Kilburn Park

Warwick
Avenue

Maida Vale
Euston

New
Cross Gate

Imperial Wharf

West Croydon

Clapham
Junction

Crystal Palace Norwood Junction

Sydenham

Forest Hill

Anerley

Penge West

Honor Oak Park

Brockley

Wapping

New Cross

Queens Road
Peckham

Peckham Rye

Denmark Hill

Surrey Quays

Whitechapel

Wandsworth
Road

Rotherhithe

Shoreditch
High Street

Haggerston

Hoxton

Shepherd’s
Bush

Shadwell

Canada
Water

Fulham Broadway

West Brompton

Parsons Green

Putney Bridge

East Putney

Southfields

Wimbledon Park

Wimbledon

Kensington
(Olympia)

Aldgate
East

Bethnal
Green Mile End

Dalston
Kingsland

Hackney
Wick

Homerton

Hackney
Central

Rectory
Road

Hackney
Downs

Theydon Bois

Epping

Debden

Loughton

Buckhurst Hill

Leytonstone

Wood StreetBruce Grove

White Hart Lane

Silver Street

Edmonton Green

Southbury

Turkey Street

Theobalds Grove

Cheshunt

Enfield Town

Stamford
Hill

Bush Hill
Park

Highams Park

Chingford

Leyton

Woodford

South Woodford

Snaresbrook

Hainault

Fairlop

Barkingside

Newbury
Park

Stratford

Roding
Valley

Grange
Hill

Chigwell

Redbridge

Gants
Hill

Wanstead

Dalston Junction

Canonbury

Stepney Green

Seven
Sisters

Highbury &
Islington

Tottenham
Hale

Walthamstow
Central

Clapton

St. James Street

Stoke
Newington

Dagenham
East

Dagenham Heathway

Becontree

Upney

Upminster

Upminster Bridge

Hornchurch

Elm Park

Ilford

Goodmayes

Chadwell
Heath

Romford

Gidea Park

Harold Wood

Shenfield

Brentwood

Seven Kings

Harringay
Green
Lanes

Wanstead
Park

Leytonstone
High Road

Leyton
Midland Road

Emerson Park
South Tottenham

Blackhorse
Road

Barking

East Ham

Plaistow

Upton
Park

Upper Holloway

Crouch
Hill

Gospel
Oak

Bow
Church

West
Ham

Bow
Road

Bromley-
by-Bow

Island Gardens

Greenwich

Deptford Bridge

South Quay

Crossharbour

Mudchute

Heron Quays

West India
Quay

Elverson Road

Devons Road

Langdon Park

All Saints

Canary Wharf

Cutty Sark for
Maritime Greenwich

Lewisham

West Silvertown

Emirates
Royal
Docks

Emirates
Greenwich
Peninsula

Pontoon
Dock

London
City Airport

Woolwich
Arsenal

King George V

Custom House for ExCeL

Prince Regent

Royal Albert

Beckton Park

Cyprus

Beckton

Gallions Reach

Westferry Blackwall

Royal
Victoria

Canning
Town

PoplarLimehouse

East
India

Stratford
International

Star Lane

North
Greenwich

Maryland

Manor Park

Forest
Gate

Oakwood

Cockfosters

Southgate

Arnos Grove

Bounds Green

Turnpike Lane

Wood Green

Manor House

Finsbury
Park

Arsenal

Kentish
Town West

Holloway Road

Caledonian Road

Mill Hill East

Edgware

Burnt Oak

Colindale

Hendon Central

Brent Cross

Golders Green

Hampstead

Belsize Park

Chalk Farm

Camden Town

High Barnet

Totteridge & Whetstone

Woodside Park

West Finchley

Finchley Central

East Finchley

Highgate

Archway

Tufnell Park

Kentish Town

Mornington
Crescent

Camden
Road

Caledonian
Road &

Barnsbury

Amersham

Chorleywood

Rickmansworth

Chalfont &
Latimer

Chesham

Moor Park

Croxley

Watford

Northwood

Northwood Hills

Pinner

North Harrow

Harrow-
on-the-Hill

Northwick
Park

Preston
Road

Wembley Park

Rayners Lane

Stanmore

Canons Park

Queensbury

Kingsbury

Neasden

Dollis Hill

Willesden Green

Swiss Cottage

Kilburn

West Hampstead

Finchley Road

West
Harrow

IckenhamUxbridge

Hillingdon Ruislip
Ruislip Manor

Eastcote

St. John’s Wood

Heathrow
Terminal 5

Heathrow
Terminal 4

Northfields

Boston Manor

South
Ealing

Osterley

Hounslow Central

Hounslow East

Hounslow
West

Hatton CrossHeathrow
Terminals 2 & 3

Perivale

Hanger Lane

Ruislip
Gardens

South Ruislip

Greenford

Northolt

South Harrow

Sudbury Hill

Sudbury Town

Alperton

Park Royal

North Ealing

Ealing
Broadway

West Ruislip

Ealing Common

Gunnersbury

Kew Gardens

Richmond

Acton Town

Chiswick
Park

Turnham
Green

Stamford
Brook

Ravenscourt
Park

West
Kensington

Barons
Court

Earl’s
Court

Shepherd’s
Bush Market

Goldhawk Road

Hammersmith

Wood Lane

White
City

Finchley Road
& Frognal

Kensal
Rise

Brondesbury
Park

Brondesbury

Kilburn
High Road

South
Hampstead

West
Acton

North
Acton

East
Acton

Southwark

Waterloo

London
Bridge Bermondsey

Vauxhall

Lambeth North
Pimlico

Stockwell

Brixton

Elephant & Castle

Oval
Kennington

Borough

Clapham North

Clapham High Street

Clapham Common

Clapham South

Balham

Tooting Bec

Tooting Broadway

Colliers Wood

South Wimbledon

Morden

Latimer Road

Ladbroke Grove

Royal Oak

Westbourne Park

Pudding
Mill Lane

Acton Central

South Acton

Hampstead
Heath

Stratford
High Street

Abbey
Road

Woodgrange
Park

Walthamstow
Queen’s Road

7

© 2016 Adobe Systems Incorporated. All Rights Reserved. 8

© 2016 Adobe Systems Incorporated. All Rights Reserved. 8

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

“There are rules!”
– The Big Lebowski

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Lower Bound

template <class ForwardIterator, class T, class Compare>
ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last,
 const T& value, Compare comp)
{
 auto n = distance(first, last);

 while (n != 0) {
 auto h = n / 2;
 auto m = next(first, h);

 if (comp(*m, value)) {
 first = next(m);
 n -= h + 1;
 } else { n = h; }
 }

 return first;
}

10

© 2016 Adobe Systems Incorporated. All Rights Reserved. 11

© 2016 Adobe Systems Incorporated. All Rights Reserved. 12

ƒ!

Menu
Item

© 2016 Adobe Systems Incorporated. All Rights Reserved. 13

ƒ!

Menu
Item

State

© 2016 Adobe Systems Incorporated. All Rights Reserved. 14

ƒ!

Menu
Item

State State’

© 2016 Adobe Systems Incorporated. All Rights Reserved. 15

© 2016 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Good Code

Good code is correct

16

© 2016 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Good Code

Good code is correct
Consistent; without contradiction

16

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Simple Bug

void print_string(const char* s) {
 while (*s != '\0') {
 cout << *s++;
 }
}

int main() {
 print_string(nullptr);
}

17

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Simple Bug

void print_string(const char* s) {
 while (*s != '\0') { Thread 1: EXC_BAD_ACCESS (code=1, address=0x0)
 cout << *s++;
 }
}

int main() {
 print_string(nullptr);
}

18

© 2016 Adobe Systems Incorporated. All Rights Reserved.

void print_string(const char* s) {
 while (*s != '\0') {
 cout << *s++;
 }
}

int main() {
 print_string(nullptr);
}

Simple Bug

19

© 2016 Adobe Systems Incorporated. All Rights Reserved.

void print_string(const char* s) {
 while (*s != '\0') {
 cout << *s++;
 }
}

int main() {
 print_string(nullptr);
}

// FORCE CRASH!

Simple Bug

19

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Subtle defects

20

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Subtle defects

Consistency requires context

20

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Subtle defects

Consistency requires context

template<class T> const T& min(const T& a, const T& b);

Returns: The smaller value. 
Remarks: Returns the first argument when the arguments are equivalent.

20

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Subtle defects

Consistency requires context

template<class T> const T& min(const T& a, const T& b);

Returns: The smaller value. 
Remarks: Returns the first argument when the arguments are equivalent.

template<class T> const T& max(const T& a, const T& b);

Returns: The larger value.  
Remarks: Returns the first argument when the arguments are equivalent.

20

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Subtle defects

21

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Subtle defects

template<typename T>
const T& clamp(const T& a, const T& lo, const T& hi)
{
 return min(max(lo, a), hi);
}

21

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Subtle defects

template<typename T>
const T& clamp(const T& a, const T& lo, const T& hi)
{
 return min(max(lo, a), hi);
}

template<typename T, typename Compare>
const T& clamp(const T& a, const T& lo, const T& hi, Compare comp)
{
 return min(max(lo, a, comp), hi, comp);
}

21

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Subtle defects

22

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Subtle defects

int main() {
 using pair = pair<int, string>;

 pair a = { 1, "OK" };

 pair lo = { 1, "FAIL: LO" };
 pair hi = { 2, "FAIL: HI" };

 a = clamp(a, lo, hi, [](const auto& a, const auto& b) {
 return a.first < b.first;
 });

 cout << a.second << endl;
};

22

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Subtle defects

int main() {
 using pair = pair<int, string>;

 pair a = { 1, "OK" };

 pair lo = { 1, "FAIL: LO" };
 pair hi = { 2, "FAIL: HI" };

 a = clamp(a, lo, hi, [](const auto& a, const auto& b) {
 return a.first < b.first;
 });

 cout << a.second << endl;
};

FAIL: LO

22

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Subtle defects

23

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Subtle defects

template<typename T>
const T& clamp(const T& a, const T& lo, const T& hi)
{
 return min(max(a, lo), hi);
}

23

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Subtle defects

template<typename T>
const T& clamp(const T& a, const T& lo, const T& hi)
{
 return min(max(a, lo), hi);
}

template<typename T, typename Compare>
const T& clamp(const T& a, const T& lo, const T& hi, Compare comp)
{
 return min(max(a, lo, comp), hi, comp);
}

23

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Subtle defects

24

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Subtle defects

template<class T> const T& min(const T& a, const T& b);

Returns: The smaller value. 
Remarks: Returns the first argument when the arguments are equivalent.

template<class T> const T& max(const T& a, const T& b);

Returns: The larger value.  
Remarks: Returns the second argument when the arguments are equivalent.

24

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Subtle defects

template<class T> const T& min(const T& a, const T& b);

Returns: The smaller value. 
Remarks: Returns the first argument when the arguments are equivalent.

template<class T> const T& max(const T& a, const T& b);

Returns: The larger value.  
Remarks: Returns the second argument when the arguments are equivalent.

template <class T> const T& max(const T& a, const T& b, const T& c);

Returns: The larger value.  
Remarks: ???

24

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Rules are Contentious

25

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Rules are Contentious

“Names should not be associated with semantics because everybody has their
own hidden assumptions about what semantics are, and they clash, causing
comprehension problems without knowing why. This is why it's valuable to

write code to reflect what code is actually doing, rather than what code ‘means’:
it’s hard to have conceptual clashes about what code actually does.”

– Craig Silverstein, Google

25

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

“There is no spoon.”
– The Matrix

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

27

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int x;

27

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int x;
// indeterminate value 

27

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int x;
// indeterminate value 

int x = 1 / 0;

27

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int x;
// indeterminate value 

int x = 1 / 0;
// undefined behavior 

27

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int x;
// indeterminate value 

int x = 1 / 0;
// undefined behavior 

double x = 1.0 / 0.0;

27

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int x;
// indeterminate value 

int x = 1 / 0;
// undefined behavior 

double x = 1.0 / 0.0;
// inf 

27

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int x;
// indeterminate value 

int x = 1 / 0;
// undefined behavior 

double x = 1.0 / 0.0;
// inf 

double x = 0.0 / 0.0;

27

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int x;
// indeterminate value 

int x = 1 / 0;
// undefined behavior 

double x = 1.0 / 0.0;
// inf 

double x = 0.0 / 0.0;
// NaN 

27

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int x;
// indeterminate value 

int x = 1 / 0;
// undefined behavior 

double x = 1.0 / 0.0;
// inf 

double x = 0.0 / 0.0;
// NaN 

struct empty { };

27

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int x;
// indeterminate value 

int x = 1 / 0;
// undefined behavior 

double x = 1.0 / 0.0;
// inf 

double x = 0.0 / 0.0;
// NaN 

struct empty { };
// sizeof(empty) == 1

27

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

28

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int a[0];

28

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int a[0];
// Error

28

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int a[0];
// Error
// but common extension

28

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int a[0];
// Error
// but common extension
using empty = int[0];

28

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int a[0];
// Error
// but common extension
using empty = int[0];
// sizeof(empty) == 0 
empty a[2];

28

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int a[0];
// Error
// but common extension
using empty = int[0];
// sizeof(empty) == 0 
empty a[2];
// &a[0] == &a[1]

28

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int a[0];
// Error
// but common extension
using empty = int[0];
// sizeof(empty) == 0 
empty a[2];
// &a[0] == &a[1]

void f() { return void(); }

28

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int a[0];
// Error
// but common extension
using empty = int[0];
// sizeof(empty) == 0 
empty a[2];
// &a[0] == &a[1]

void f() { return void(); }
// OK 

28

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int a[0];
// Error
// but common extension
using empty = int[0];
// sizeof(empty) == 0 
empty a[2];
// &a[0] == &a[1]

void f() { return void(); }
// OK 

void x = f();

28

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int a[0];
// Error
// but common extension
using empty = int[0];
// sizeof(empty) == 0 
empty a[2];
// &a[0] == &a[1]

void f() { return void(); }
// OK 

void x = f();
// Error

28

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int a[0];
// Error
// but common extension
using empty = int[0];
// sizeof(empty) == 0 
empty a[2];
// &a[0] == &a[1]

void f() { return void(); }
// OK 

void x = f();
// Error
// but void* is a pointer to anything…

28

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

29

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

std::vector<int> x = { 1, 2, 3 }; 
try {  
 x.insert(x.begin(), 0); 
} catch (...) { 
 std::cout << x.size() << std::endl;  
}

29

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

std::vector<int> x = { 1, 2, 3 }; 
try {  
 x.insert(x.begin(), 0); 
} catch (...) { 
 std::cout << x.size() << std::endl;  
}
// Basic Exception Guarantee: 
// Valid but unspecified 

29

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

std::vector<int> x = { 1, 2, 3 }; 
try {  
 x.insert(x.begin(), 0); 
} catch (...) { 
 std::cout << x.size() << std::endl;  
}
// Basic Exception Guarantee: 
// Valid but unspecified 

std::vector<int> y = std::move(x);

29

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

std::vector<int> x = { 1, 2, 3 }; 
try {  
 x.insert(x.begin(), 0); 
} catch (...) { 
 std::cout << x.size() << std::endl;  
}
// Basic Exception Guarantee: 
// Valid but unspecified 

std::vector<int> y = std::move(x);
// Moved from object, x, is valid but unspecified

29

© 2016 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Good Code

30

© 2016 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Good Code

Good code is correct
Consistent; without contradiction

30

© 2016 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Good Code

Good code is correct
Consistent; without contradiction

Good code has meaning

30

© 2016 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Good Code

Good code is correct
Consistent; without contradiction

Good code has meaning
Correspondence to an entity; specified, defined

30

© 2016 Adobe Systems Incorporated. All Rights Reserved. 31

ƒ!

Menu
Item

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Categories of nothing

32

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Categories of nothing

Absence of something
0, Ø, [p, p), void

32

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Categories of nothing

Absence of something
0, Ø, [p, p), void

Absence of meaning
NaN, undefined, indeterminate

32

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

33

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int x;

33

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int x;
// Partially formed; assign value or destruct 

33

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int x;
// Partially formed; assign value or destruct 

int x = 1 / 0;

33

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int x;
// Partially formed; assign value or destruct 

int x = 1 / 0;
// undefined behavior; reading from meaningless value 

33

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int x;
// Partially formed; assign value or destruct 

int x = 1 / 0;
// undefined behavior; reading from meaningless value 

double x = 1.0 / 0.0;

33

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int x;
// Partially formed; assign value or destruct 

int x = 1 / 0;
// undefined behavior; reading from meaningless value 

double x = 1.0 / 0.0;
// inf; OK, approximation for underflow 

33

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int x;
// Partially formed; assign value or destruct 

int x = 1 / 0;
// undefined behavior; reading from meaningless value 

double x = 1.0 / 0.0;
// inf; OK, approximation for underflow 

double x = 0.0 / 0.0;

33

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int x;
// Partially formed; assign value or destruct 

int x = 1 / 0;
// undefined behavior; reading from meaningless value 

double x = 1.0 / 0.0;
// inf; OK, approximation for underflow 

double x = 0.0 / 0.0;
// NaN; OK, though undefined behavior would also be

33

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int x;
// Partially formed; assign value or destruct 

int x = 1 / 0;
// undefined behavior; reading from meaningless value 

double x = 1.0 / 0.0;
// inf; OK, approximation for underflow 

double x = 0.0 / 0.0;
// NaN; OK, though undefined behavior would also be

33

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int x;
// Partially formed; assign value or destruct 

int x = 1 / 0;
// undefined behavior; reading from meaningless value 

double x = 1.0 / 0.0;
// inf; OK, approximation for underflow 

double x = 0.0 / 0.0;
// NaN; OK, though undefined behavior would also be

struct empty : void { };

33

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int x;
// Partially formed; assign value or destruct 

int x = 1 / 0;
// undefined behavior; reading from meaningless value 

double x = 1.0 / 0.0;
// inf; OK, approximation for underflow 

double x = 0.0 / 0.0;
// NaN; OK, though undefined behavior would also be

struct empty : void { };
// sizeof(empty) == 0;

33

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

34

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int a[0];

34

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int a[0];
// OK

34

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int a[0];
// OK
using empty = int[0];

34

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int a[0];
// OK
using empty = int[0];
// sizeof(empty) == 0 
empty a[2];

34

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int a[0];
// OK
using empty = int[0];
// sizeof(empty) == 0 
empty a[2];
// &a[0] == &a[1]

34

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int a[0];
// OK
using empty = int[0];
// sizeof(empty) == 0 
empty a[2];
// &a[0] == &a[1]

void f() { return void(); }

34

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int a[0];
// OK
using empty = int[0];
// sizeof(empty) == 0 
empty a[2];
// &a[0] == &a[1]

void f() { return void(); }
// OK 

34

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int a[0];
// OK
using empty = int[0];
// sizeof(empty) == 0 
empty a[2];
// &a[0] == &a[1]

void f() { return void(); }
// OK 

void x = f();

34

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int a[0];
// OK
using empty = int[0];
// sizeof(empty) == 0 
empty a[2];
// &a[0] == &a[1]

void f() { return void(); }
// OK 

void x = f();
// OK 
// void* is OK

34

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

35

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

std::vector<int> x = { 1, 2, 3 }; 
try {  
 x.insert(x.begin(), 0); 
} catch (...) { 
 std::cout << x.size() << std::endl;  
}

35

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

std::vector<int> x = { 1, 2, 3 }; 
try {  
 x.insert(x.begin(), 0); 
} catch (...) { 
 std::cout << x.size() << std::endl;  
}
// Basic Exception Guarantee: 
// Partially formed object. Reading is undefined behavior 

35

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

std::vector<int> x = { 1, 2, 3 }; 
try {  
 x.insert(x.begin(), 0); 
} catch (...) { 
 std::cout << x.size() << std::endl;  
}
// Basic Exception Guarantee: 
// Partially formed object. Reading is undefined behavior 

std::vector<int> y = std::move(x);

35

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

std::vector<int> x = { 1, 2, 3 }; 
try {  
 x.insert(x.begin(), 0); 
} catch (...) { 
 std::cout << x.size() << std::endl;  
}
// Basic Exception Guarantee: 
// Partially formed object. Reading is undefined behavior 

std::vector<int> y = std::move(x);
// Moved from object, x, is partially formed

35

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

“That makes you wonder. Take chicken, for example.”
– Matrix

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Specification

37

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Specification

▪ clone_ptr<T> is like std::unique_ptr<T> but with two additional operations, copy and
assignment that copy the object pointed to.

▪ Example implementation of new operations:
clone_ptr(const clone_ptr& x) : _ptr(new T(*x)) { }
clone_ptr& operator=(const clone_ptr& x) { return *this = clone_ptr(x); }

37

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Specification

▪ clone_ptr<T> is like std::unique_ptr<T> but with two additional operations, copy and
assignment that copy the object pointed to.

▪ Example implementation of new operations:
clone_ptr(const clone_ptr& x) : _ptr(new T(*x)) { }
clone_ptr& operator=(const clone_ptr& x) { return *this = clone_ptr(x); }

▪ copy-assignment written in terms of copy and move-assignment

37

© 2016 Adobe Systems Incorporated. All Rights Reserved.

What is copy?

▪ Copying an object creates a new object which is equal-to and logically disjoint from the
original.

T a = b; ⇒ a == b;
T a = b; modify(b); ⇒ a != b;

38

© 2016 Adobe Systems Incorporated. All Rights Reserved.

“copy” of clone_ptr

clone_ptr<T> a = b; ⇒ a != b;

▪ “Copying” a clone pointer creates an object that is not equal to the original
▪ Contradiction

▪ Defining a copy-constructor that doesn’t copy is dangerous
▪ The compiler may elide copies
▪ Programmers will assume they are substitutable

39

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Specification: Amendment 1

▪ Two clone_ptrs are considered equal if the value they point to is equal. Because we don’t
want to require that the pointed to types are equal operator==() and operator!=() are not
implemented. i.e.:

clone_ptr<T> a = b; ⇒ a == b;

However, == is not implemented.

40

© 2016 Adobe Systems Incorporated. All Rights Reserved.

What is a pointer?

▪ A pointer is an object that refers to another object via a dereference operation. Two pointers
are equal if they refer to the same instance of an object.

a == b; ⇒ &*a == &*b;

41

© 2016 Adobe Systems Incorporated. All Rights Reserved.

“equality” of clone_ptr

clone_ptr<T> a = b; ⇒ a == b;

▪ Because clone_ptr is a pointer this would imply:

assert(&*a == &*b);

▪ But that is false - contradiction.

42

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Specification: Amendment 2

▪ Because clone_ptr<> is not a pointer it is to be renamed indirect<>.

43

© 2016 Adobe Systems Incorporated. All Rights Reserved.

What is a const?

▪ const is a type qualifier. An object accessed through a const reference may not be modified.

const T a = b; read(a); ⇒ a == b;
modify(a); is not allowed

44

© 2016 Adobe Systems Incorporated. All Rights Reserved.

“const” of indirect

const indirect<T> a = b; read(a); ⇏ a == b;

▪ Because const does not propagate (from unique_ptr):

void read(const indirect<T>& x) {
 modify(*x);
}

▪ Contradiction!

45

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Specification: Amendment 3

▪ Because copy of remote part implies const propagation, get(), operator*() and operator->()
must be overloaded:

T* get();
const T* get() const;

T& operator*();
const T& operator*() const;

T* operator->();
const T* operator->() const;

46

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Alternative Specification:

47

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Alternative Specification:

▪ clone_ptr<T> is like std::unique_ptr<T> but with one additional operation, clone() that
works by copying the object pointed to.

▪ Example implementation of clone operation:

clone_ptr clone() const { return make_clone<T>(**this); }

47

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

“What’s in the box?”
– Seven

© 2016 Adobe Systems Incorporated. All Rights Reserved.

The Permutation Paradox

49

© 2016 Adobe Systems Incorporated. All Rights Reserved.

The Permutation Paradox

50

© 2016 Adobe Systems Incorporated. All Rights Reserved.

The Permutation Paradox

50

???

© 2016 Adobe Systems Incorporated. All Rights Reserved.

The Permutation Paradox

50

???

nothing ⇒ unsafe

© 2016 Adobe Systems Incorporated. All Rights Reserved.

The Permutation Paradox

50

???

nothing ⇒ unsafe

something ⇒ inefficient

© 2016 Adobe Systems Incorporated. All Rights Reserved.

The Permutation Paradox

51

© 2016 Adobe Systems Incorporated. All Rights Reserved.

“There is a duality between transformations and the corresponding actions: An action is
definable in terms of a transformation and vice versa:

The Permutation Paradox

51

© 2016 Adobe Systems Incorporated. All Rights Reserved.

“There is a duality between transformations and the corresponding actions: An action is
definable in terms of a transformation and vice versa:

void a(T& x) { x = f(x); } // action from transformation

and

T f(T x) { a(x); return x; } // transformation from action

The Permutation Paradox

51

© 2016 Adobe Systems Incorporated. All Rights Reserved.

“There is a duality between transformations and the corresponding actions: An action is
definable in terms of a transformation and vice versa:

void a(T& x) { x = f(x); } // action from transformation

and

T f(T x) { a(x); return x; } // transformation from action

Despite this duality, independent implementations are sometimes more efficient, in which case
both action and transformation need to be provided.”

– Elements of Programming (section 2.5)

The Permutation Paradox

51

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Purity

52

This section borrowed from Andrei Alexandrescu

© 2016 Adobe Systems Incorporated. All Rights Reserved.

▪ Text book purity requires tail-recursion

Purity

52

This section borrowed from Andrei Alexandrescu

© 2016 Adobe Systems Incorporated. All Rights Reserved.

▪ Text book purity requires tail-recursion

// If C++ had tail recursion

int helper(int n, int result) {
 return n <= 1 ? result : helper(n - 1, n * result);
}

int factorial(int n) {
 return helper(n, 1);
}

Purity

52

This section borrowed from Andrei Alexandrescu

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Purity

53

© 2016 Adobe Systems Incorporated. All Rights Reserved.

▪ In math, factorial is defined as iteration

Purity

53

© 2016 Adobe Systems Incorporated. All Rights Reserved.

▪ In math, factorial is defined as iteration

int factorial(int n) {
 int result = 1;
 for (int i = 2; i <= n; ++i) {
 result *= i;
 }
 return result;
}

Purity

53

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Purity

54

© 2016 Adobe Systems Incorporated. All Rights Reserved.

▪ Pure functions always return the same result for the same arguments
▪ No reading and writing of global variables (global constants are okay)
▪ No calling of impure functions
▪ Local transient state, inside the function, may be modified
▪ Anything reachable from the arguments may be modified

Purity

54

© 2016 Adobe Systems Incorporated. All Rights Reserved.

▪ Pure functions always return the same result for the same arguments
▪ No reading and writing of global variables (global constants are okay)
▪ No calling of impure functions
▪ Local transient state, inside the function, may be modified
▪ Anything reachable from the arguments may be modified
▪ Action to Function Transformation

Purity

54

© 2016 Adobe Systems Incorporated. All Rights Reserved.

▪ Pure functions always return the same result for the same arguments
▪ No reading and writing of global variables (global constants are okay)
▪ No calling of impure functions
▪ Local transient state, inside the function, may be modified
▪ Anything reachable from the arguments may be modified
▪ Action to Function Transformation
▪ std::sort is pure

Purity

54

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

“It’s not that I’m lazy, it’s that I just don’t care.”
– Office Space

© 2016 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Good Code

Good code is correct
Consistent; without contradiction

Good code has meaning
Correspondence to an entity; specified, defined

56

© 2016 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Good Code

Good code is correct
Consistent; without contradiction

Good code has meaning
Correspondence to an entity; specified, defined

Good code is efficient

56

© 2016 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Good Code

Good code is correct
Consistent; without contradiction

Good code has meaning
Correspondence to an entity; specified, defined

Good code is efficient
Maximum effect with minimum resources

56

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Efficiency

57

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Choice of data structures and algorithms

Choice of what to optimize for

Efficiency

57

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Efficiency

58

A B C D E F G

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Efficiency

58

ABCDEFG

© 2016 Adobe Systems Incorporated. All Rights Reserved.

template <class ForwardIterator, class N>
auto reverse_n(ForwardIterator f, N n) {
 if (n < 2) return next(f, n);

 auto h = n / 2;
 auto m1 = reverse_n(f, h);
 auto m2 = next(m1, n % 2);
 auto l = reverse_n(m2, h);
 swap_ranges(f, m1, m2);
 return l;
}

template <class ForwardIterator>
void reverse(ForwardIterator f, ForwardIterator l) {
 reverse_n(f, distance(f, l));
}

O(n log n)

Efficiency

59

Elements of Programming, 10.3

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Efficiency

60

A B C D E F G

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Efficiency

60

ABCDEFG

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Simple Word Model

61

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Simple Word Model

▪ Current Document
▪ Selection
▪ Provides a range; an empty range denotes a location

62

© 2016 Adobe Systems Incorporated. All Rights Reserved.

More Complex Word Model

▪ Need to be able to set the selection in “constant” time
▪ This would imply a vector data structure
▪ Also need constant time insert and erase
▪ This would imply a list data structure

▪ Solution: a more complex data structure such as a rope

63

© 2016 Adobe Systems Incorporated. All Rights Reserved.

What is an efficient type?

64

© 2016 Adobe Systems Incorporated. All Rights Reserved.

What is an efficient type?

▪ A type is complete if the set of provided basis operations allow us to construct and operate on
any valid, representable value

▪ A type is efficient if the set of basis operations allow for any valid operation to be performed in
the most efficient way possible for the chosen representation

64

© 2016 Adobe Systems Incorporated. All Rights Reserved.

What is an efficient type?

▪ A type is complete if the set of provided basis operations allow us to construct and operate on
any valid, representable value

▪ A type is efficient if the set of basis operations allow for any valid operation to be performed in
the most efficient way possible for the chosen representation

▪ By simply making all data members public, you provide, by definition, an efficient basis
▪ However, you may fail to protect the invariants of the type, making the approach unsafe

▪ std::move is both unsafe an inefficient.

64

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

“I don’t smoke, I don’t drink... I recycle...”
– 50/50

© 2016 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Good Code

Good code is correct
Consistent; without contradiction

Good code has meaning
Correspondence to an entity; specified, defined

Good code is efficient
Maximum effect with minimum resources

Good code is reusable
Applicable to multiple problems; general in purpose

66

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Reusable

67

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Concrete but of general use, i.e. numeric algorithms, utf conversions, …

Generic when algorithm is useful with different models
Sometimes faster to convert one model to another

Runtime dispatched when types not known at compile time

Reusable

67

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Reusable

68

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Minimize client dependencies and intrusive requirements

Separate data structures from algorithms

Reusable

68

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Reusable

69

© 2016 Adobe Systems Incorporated. All Rights Reserved.

template <class T, class InputIterator, class OutputIterator>
OutputIterator copy_utf(InputIterator first, InputIterator last,
 OutputIterator result);

const char str[] = u8"Hello World!";
vector<uint16_t> out;
copy_utf<uint16_t>(begin(str), end(str), back_inserter(out));

Reusable

69

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

“You mean we’re in the future.”
– Back to the Future Part II

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Why Status Quo Will Fail

71

© 2016 Adobe Systems Incorporated. All Rights Reserved.

“I’ve assigned this problem [binary search] in courses at Bell Labs and IBM.
Professional programmers had a couple of hours to convert the description into
a programming language of their choice; a high-level pseudo code was fine…

Ninety percent of the programmers found bugs in their programs (and I wasn’t
always convinced of the correctness of the code in which no bugs were found).”

– Jon Bentley, Programming Pearls, 1986

Why Status Quo Will Fail

71

© 2016 Adobe Systems Incorporated. All Rights Reserved.

int* lower_bound(int* first, int* last, int value)
{
 while (first != last)
 {
 int* middle = first + (last - first) / 2;

 if (*middle < value) first = middle + 1;
 else last = middle;
 }

 return first;
}

Why Status Quo Will Fail

72

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Elements of Programming

Concepts aren’t dead yet in C++
Increased interest in new languages and formalisms
Renewed interest in Communication Sequential Processes
Renewed interest in Functional Programming ideas
Rise of Reactive Programming & Functional Reactive Programming

Signs of Hope

73

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Work Continues

74

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Generating Reactive Programs for Graphical User Interfaces from Multi-way Dataflow Constraint
Systems, GPCE 2015, Gabriel Foust, Jaakko Järvi, Sean Parent

One Way To Select Many, ECOOP 2016, Jaakko Järvi, Sean Parent

http://sean-parent.stlab.cc/papers-and-presentations
https://github.com/stlab

Work Continues

74

http://sean-parent.stlab.cc/papers-and-presentations
https://github.com/stlab

© 2016 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Write Better Code

75

