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Better Code

▪ Regular Types 
▪ Goal: No Incomplete Types  
▪ Algorithms 
▪ Goal: No Raw Loops 
▪ Data Structures 
▪ Goal: No Incidental Data Structures 
▪ Runtime Polymorphism 
▪ Goal: No Inheritance 
▪ Concurrency 
▪ Goal: No Raw Synchronization Primitives 

http://sean-parent.stlab.cc/papers-and-presentations
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Key to lines
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Waterloo & City
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Hammersmith & City

Northern

District
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some public holidays

Emirates Air Line

Check before you travel
§ Services to/from some stations are subject 
 to variation. Please search ‘TfL stations’ 
 for full details

§ Caledonian Road    
 Station closed temporarily from Spring 2016.
---------------------------------------------------------------------------
§ Holland Park   
 Station closed from Saturday 2 January until 
 early August 2016.
---------------------------------------------------------------------------
§ Paddington
 Bakerloo line trains will not stop at this station 
 from Saturday 2 April until early August 2016.
---------------------------------------------------------------------------
§ Tufnell Park
 Station closed until mid-March 2016.
---------------------------------------------------------------------------
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“There are rules!” 
– The Big Lebowski
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Lower Bound

template <class ForwardIterator, class T, class Compare> 
ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last, 
        const T& value, Compare comp) 
{ 
    auto n = distance(first, last); 

    while (n != 0)  { 
        auto h = n / 2; 
        auto m = next(first, h); 

        if (comp(*m, value)) { 
            first = next(m); 
            n -= h + 1; 
        } else { n = h; } 
    } 

    return first; 
}
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Good Code

Good code is correct
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Good Code

Good code is correct
Consistent; without contradiction
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Simple Bug

void print_string(const char* s) { 
    while (*s != '\0') { 
        cout << *s++; 
    } 
} 

int main() { 
    print_string(nullptr); 
}

17
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Simple Bug

void print_string(const char* s) { 
    while (*s != '\0') {             Thread 1: EXC_BAD_ACCESS (code=1, address=0x0) 
        cout << *s++; 
    } 
} 

int main() { 
    print_string(nullptr); 
}
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void print_string(const char* s) { 
    while (*s != '\0') { 
        cout << *s++; 
    } 
} 

int main() { 
    print_string(nullptr); 
}

Simple Bug
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void print_string(const char* s) { 
    while (*s != '\0') { 
        cout << *s++; 
    } 
} 

int main() { 
    print_string(nullptr); 
}

// FORCE CRASH!

Simple Bug

19
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Subtle defects
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Subtle defects

Consistency requires context
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Subtle defects

Consistency requires context

template<class T> const T& min(const T& a, const T& b);

Returns: The smaller value. 
Remarks: Returns the first argument when the arguments are equivalent. 
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Subtle defects

Consistency requires context

template<class T> const T& min(const T& a, const T& b);

Returns: The smaller value. 
Remarks: Returns the first argument when the arguments are equivalent. 

template<class T> const T& max(const T& a, const T& b);

Returns: The larger value.  
Remarks: Returns the first argument when the arguments are equivalent. 
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Subtle defects
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Subtle defects

template<typename T>
const T& clamp(const T& a, const T& lo, const T& hi)
{
    return min(max(lo, a), hi);
}

21
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Subtle defects

template<typename T>
const T& clamp(const T& a, const T& lo, const T& hi)
{
    return min(max(lo, a), hi);
}

template<typename T, typename Compare>
const T& clamp(const T& a, const T& lo, const T& hi, Compare comp)
{
    return min(max(lo, a, comp), hi, comp);
}

21
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Subtle defects
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Subtle defects

int main() {
    using pair = pair<int, string>;

    pair a = { 1, "OK" };

    pair lo = { 1, "FAIL: LO" };
    pair hi = { 2, "FAIL: HI" };

    a = clamp(a, lo, hi, [](const auto& a, const auto& b) {
        return a.first < b.first;
    });

    cout << a.second << endl;
};
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Subtle defects

int main() {
    using pair = pair<int, string>;

    pair a = { 1, "OK" };

    pair lo = { 1, "FAIL: LO" };
    pair hi = { 2, "FAIL: HI" };

    a = clamp(a, lo, hi, [](const auto& a, const auto& b) {
        return a.first < b.first;
    });

    cout << a.second << endl;
};

FAIL: LO
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Subtle defects
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Subtle defects

template<typename T>
const T& clamp(const T& a, const T& lo, const T& hi)
{
    return min(max(a, lo), hi);
}

23



© 2016 Adobe Systems Incorporated.  All Rights Reserved.

Subtle defects

template<typename T>
const T& clamp(const T& a, const T& lo, const T& hi)
{
    return min(max(a, lo), hi);
}

template<typename T, typename Compare>
const T& clamp(const T& a, const T& lo, const T& hi, Compare comp)
{
    return min(max(a, lo, comp), hi, comp);
}

23
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Subtle defects
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Subtle defects

template<class T> const T& min(const T& a, const T& b);

Returns: The smaller value. 
Remarks: Returns the first argument when the arguments are equivalent. 

template<class T> const T& max(const T& a, const T& b);

Returns: The larger value.  
Remarks: Returns the second argument when the arguments are equivalent. 
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Subtle defects

template<class T> const T& min(const T& a, const T& b);

Returns: The smaller value. 
Remarks: Returns the first argument when the arguments are equivalent. 

template<class T> const T& max(const T& a, const T& b);

Returns: The larger value.  
Remarks: Returns the second argument when the arguments are equivalent. 

template <class T> const T& max(const T& a, const T& b, const T& c);

Returns: The larger value.  
Remarks: ???

24



© 2016 Adobe Systems Incorporated.  All Rights Reserved.

Rules are Contentious
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Rules are Contentious

“Names should not be associated with semantics because everybody has their 
own hidden assumptions about what semantics are, and they clash, causing 
comprehension problems without knowing why. This is why it's valuable to 

write code to reflect what code is actually doing, rather than what code ‘means’: 
it’s hard to have conceptual clashes about what code actually does.”

– Craig Silverstein, Google
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“There is no spoon.” 
– The Matrix
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How can nothing be something?
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How can nothing be something?

int x;
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How can nothing be something?

int x;
// indeterminate value 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int x = 1 / 0;
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// indeterminate value 

int x = 1 / 0;
// undefined behavior 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How can nothing be something?

int x;
// indeterminate value 

int x = 1 / 0;
// undefined behavior 

double x = 1.0 / 0.0;
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How can nothing be something?

int x;
// indeterminate value 

int x = 1 / 0;
// undefined behavior 

double x = 1.0 / 0.0;
// inf 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How can nothing be something?
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// indeterminate value 

int x = 1 / 0;
// undefined behavior 

double x = 1.0 / 0.0;
// inf 

double x = 0.0 / 0.0;

27



© 2016 Adobe Systems Incorporated.  All Rights Reserved.

How can nothing be something?

int x;
// indeterminate value 

int x = 1 / 0;
// undefined behavior 

double x = 1.0 / 0.0;
// inf 

double x = 0.0 / 0.0;
// NaN 

27
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How can nothing be something?

int x;
// indeterminate value 

int x = 1 / 0;
// undefined behavior 

double x = 1.0 / 0.0;
// inf 

double x = 0.0 / 0.0;
// NaN 

struct empty { };

27
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How can nothing be something?

int x;
// indeterminate value 

int x = 1 / 0;
// undefined behavior 

double x = 1.0 / 0.0;
// inf 

double x = 0.0 / 0.0;
// NaN 

struct empty { };
// sizeof(empty) == 1

27
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How can nothing be something?

28
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How can nothing be something?

int a[0];
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How can nothing be something?

int a[0];
// Error
// but common extension
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How can nothing be something?

int a[0];
// Error
// but common extension
using empty = int[0];

28
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How can nothing be something?

int a[0];
// Error
// but common extension
using empty = int[0];
// sizeof(empty) == 0 
empty a[2];
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How can nothing be something?

int a[0];
// Error
// but common extension
using empty = int[0];
// sizeof(empty) == 0 
empty a[2];
// &a[0] == &a[1]
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How can nothing be something?

int a[0];
// Error
// but common extension
using empty = int[0];
// sizeof(empty) == 0 
empty a[2];
// &a[0] == &a[1]

void f() { return void(); }

28
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How can nothing be something?

int a[0];
// Error
// but common extension
using empty = int[0];
// sizeof(empty) == 0 
empty a[2];
// &a[0] == &a[1]

void f() { return void(); }
// OK 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How can nothing be something?

int a[0];
// Error
// but common extension
using empty = int[0];
// sizeof(empty) == 0 
empty a[2];
// &a[0] == &a[1]

void f() { return void(); }
// OK 

void x = f();
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How can nothing be something?

int a[0];
// Error
// but common extension
using empty = int[0];
// sizeof(empty) == 0 
empty a[2];
// &a[0] == &a[1]

void f() { return void(); }
// OK 

void x = f();
// Error
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How can nothing be something?

int a[0];
// Error
// but common extension
using empty = int[0];
// sizeof(empty) == 0 
empty a[2];
// &a[0] == &a[1]

void f() { return void(); }
// OK 

void x = f();
// Error
// but void* is a pointer to anything…

28
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How can nothing be something?

29



© 2016 Adobe Systems Incorporated.  All Rights Reserved.

How can nothing be something?

std::vector<int> x = { 1, 2, 3 }; 
try {  
    x.insert(x.begin(), 0); 
} catch (...) { 
    std::cout << x.size() << std::endl;  
}
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How can nothing be something?

std::vector<int> x = { 1, 2, 3 }; 
try {  
    x.insert(x.begin(), 0); 
} catch (...) { 
    std::cout << x.size() << std::endl;  
}
// Basic Exception Guarantee: 
// Valid but unspecified 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How can nothing be something?

std::vector<int> x = { 1, 2, 3 }; 
try {  
    x.insert(x.begin(), 0); 
} catch (...) { 
    std::cout << x.size() << std::endl;  
}
// Basic Exception Guarantee: 
// Valid but unspecified 

std::vector<int> y = std::move(x);

29
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How can nothing be something?

std::vector<int> x = { 1, 2, 3 }; 
try {  
    x.insert(x.begin(), 0); 
} catch (...) { 
    std::cout << x.size() << std::endl;  
}
// Basic Exception Guarantee: 
// Valid but unspecified 

std::vector<int> y = std::move(x);
// Moved from object, x, is valid but unspecified

29
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Good Code

Good code is correct
Consistent; without contradiction
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Good Code

Good code is correct
Consistent; without contradiction

Good code has meaning
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Good Code

Good code is correct
Consistent; without contradiction

Good code has meaning
Correspondence to an entity; specified, defined

30
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Categories of nothing
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Categories of nothing

Absence of something
0, Ø, [p, p), void
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Categories of nothing

Absence of something
0, Ø, [p, p), void

Absence of meaning
NaN, undefined, indeterminate

32
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How can nothing be something?

int x;
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How can nothing be something?

int x;
// Partially formed; assign value or destruct 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How can nothing be something?

int x;
// Partially formed; assign value or destruct 

int x = 1 / 0;
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How can nothing be something?

int x;
// Partially formed; assign value or destruct 

int x = 1 / 0;
// undefined behavior; reading from meaningless value 

33



© 2016 Adobe Systems Incorporated.  All Rights Reserved.

How can nothing be something?

int x;
// Partially formed; assign value or destruct 

int x = 1 / 0;
// undefined behavior; reading from meaningless value 

double x = 1.0 / 0.0;
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How can nothing be something?

int x;
// Partially formed; assign value or destruct 

int x = 1 / 0;
// undefined behavior; reading from meaningless value 

double x = 1.0 / 0.0;
// inf; OK, approximation for underflow 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How can nothing be something?

int x;
// Partially formed; assign value or destruct 

int x = 1 / 0;
// undefined behavior; reading from meaningless value 

double x = 1.0 / 0.0;
// inf; OK, approximation for underflow 

double x = 0.0 / 0.0;
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How can nothing be something?
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How can nothing be something?

int x;
// Partially formed; assign value or destruct 

int x = 1 / 0;
// undefined behavior; reading from meaningless value 

double x = 1.0 / 0.0;
// inf; OK, approximation for underflow 

double x = 0.0 / 0.0;
// NaN; OK, though undefined behavior would also be 

struct empty : void { };
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How can nothing be something?

int x;
// Partially formed; assign value or destruct 

int x = 1 / 0;
// undefined behavior; reading from meaningless value 

double x = 1.0 / 0.0;
// inf; OK, approximation for underflow 

double x = 0.0 / 0.0;
// NaN; OK, though undefined behavior would also be 

struct empty : void { };
// sizeof(empty) == 0;
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How can nothing be something?
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How can nothing be something?

int a[0];
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empty a[2];
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How can nothing be something?

int a[0];
// OK
using empty = int[0];
// sizeof(empty) == 0 
empty a[2];
// &a[0] == &a[1]

void f() { return void(); }
// OK 

void x = f();
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How can nothing be something?

int a[0];
// OK
using empty = int[0];
// sizeof(empty) == 0 
empty a[2];
// &a[0] == &a[1]

void f() { return void(); }
// OK 

void x = f();
// OK 
// void* is OK
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How can nothing be something?

std::vector<int> x = { 1, 2, 3 }; 
try {  
    x.insert(x.begin(), 0); 
} catch (...) { 
    std::cout << x.size() << std::endl;  
}
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try {  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} catch (...) { 
    std::cout << x.size() << std::endl;  
}
// Basic Exception Guarantee: 
// Partially formed object. Reading is undefined behavior 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How can nothing be something?

std::vector<int> x = { 1, 2, 3 }; 
try {  
    x.insert(x.begin(), 0); 
} catch (...) { 
    std::cout << x.size() << std::endl;  
}
// Basic Exception Guarantee: 
// Partially formed object. Reading is undefined behavior 

std::vector<int> y = std::move(x);
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How can nothing be something?

std::vector<int> x = { 1, 2, 3 }; 
try {  
    x.insert(x.begin(), 0); 
} catch (...) { 
    std::cout << x.size() << std::endl;  
}
// Basic Exception Guarantee: 
// Partially formed object. Reading is undefined behavior 

std::vector<int> y = std::move(x);
// Moved from object, x, is partially formed
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“That makes you wonder. Take chicken, for example.” 
– Matrix
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Specification
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Specification

▪ clone_ptr<T> is like std::unique_ptr<T> but with two additional operations, copy and 
assignment that copy the object pointed to. 

▪ Example implementation of new operations: 
clone_ptr(const clone_ptr& x) : _ptr(new T(*x)) { } 
clone_ptr& operator=(const clone_ptr& x) { return *this = clone_ptr(x); } 
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Specification

▪ clone_ptr<T> is like std::unique_ptr<T> but with two additional operations, copy and 
assignment that copy the object pointed to. 

▪ Example implementation of new operations: 
clone_ptr(const clone_ptr& x) : _ptr(new T(*x)) { } 
clone_ptr& operator=(const clone_ptr& x) { return *this = clone_ptr(x); } 

▪ copy-assignment written in terms of copy and move-assignment
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What is copy?

▪ Copying an object creates a new object which is equal-to and logically disjoint from the 
original. 

T a = b; ⇒ a == b; 
T a = b; modify(b); ⇒ a != b;
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“copy” of clone_ptr

clone_ptr<T> a = b; ⇒ a != b; 

▪ “Copying” a clone pointer creates an object that is not equal to the original 
▪ Contradiction 

▪ Defining a copy-constructor that doesn’t copy is dangerous 
▪ The compiler may elide copies 
▪ Programmers will assume they are substitutable
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Specification: Amendment 1

▪ Two clone_ptrs are considered equal if the value they point to is equal. Because we don’t 
want to require that the pointed to types are equal operator==() and operator!=() are not 
implemented. i.e.: 

clone_ptr<T> a = b; ⇒ a == b; 

However, == is not implemented.
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What is a pointer?

▪ A pointer is an object that refers to another object via a dereference operation. Two pointers 
are equal if they refer to the same instance of an object. 

a == b; ⇒ &*a == &*b;
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“equality” of clone_ptr

clone_ptr<T> a = b; ⇒ a == b; 

▪ Because clone_ptr is a pointer this would imply: 

assert(&*a == &*b); 

▪ But that is false - contradiction.
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Specification: Amendment 2

▪ Because clone_ptr<> is not a pointer it is to be renamed indirect<>.
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What is a const?

▪ const is a type qualifier. An object accessed through a const reference may not be modified. 

const T a = b; read(a); ⇒ a == b; 
modify(a); is not allowed
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“const” of indirect

const indirect<T> a = b; read(a); ⇏ a == b; 

▪ Because const does not propagate (from unique_ptr): 

void read(const indirect<T>& x) { 
    modify(*x); 
} 

▪ Contradiction!
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Specification: Amendment 3

▪ Because copy of remote part implies const propagation, get(), operator*() and operator->() 
must be overloaded: 

T* get(); 
const T* get() const; 

T& operator*(); 
const T& operator*() const; 

T* operator->(); 
const T* operator->() const;
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Alternative Specification:
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Alternative Specification:

▪ clone_ptr<T> is like std::unique_ptr<T> but with one additional operation, clone() that 
works by copying the object pointed to. 

▪ Example implementation of clone operation: 

clone_ptr clone() const { return make_clone<T>(**this); }
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“What’s in the box?” 
– Seven
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The Permutation Paradox
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The Permutation Paradox
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The Permutation Paradox
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The Permutation Paradox

50
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nothing ⇒ unsafe

something ⇒ inefficient
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The Permutation Paradox
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“There is a duality between transformations and the corresponding actions: An action is 
definable in terms of a transformation and vice versa: 

The Permutation Paradox
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“There is a duality between transformations and the corresponding actions: An action is 
definable in terms of a transformation and vice versa: 

void a(T& x) { x = f(x); } // action from transformation 

and 

T f(T x) { a(x); return x; } // transformation from action 

The Permutation Paradox
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“There is a duality between transformations and the corresponding actions: An action is 
definable in terms of a transformation and vice versa: 

void a(T& x) { x = f(x); } // action from transformation 

and 

T f(T x) { a(x); return x; } // transformation from action 

Despite this duality, independent implementations are sometimes more efficient, in which case 
both action and transformation need to be provided.” 

– Elements of Programming (section 2.5)

The Permutation Paradox
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Purity

52

This section borrowed from Andrei Alexandrescu 
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▪ Text book purity requires tail-recursion

Purity
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▪ Text book purity requires tail-recursion

// If C++ had tail recursion

int helper(int n, int result) {
    return n <= 1 ? result : helper(n - 1, n * result);
}

int factorial(int n) {
    return helper(n, 1);
}

Purity
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Purity
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▪ In math, factorial is defined as iteration 

Purity
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▪ In math, factorial is defined as iteration 

int factorial(int n) {
    int result = 1;
    for (int i = 2; i <= n; ++i) {
        result *= i;
    }
    return result;
}

Purity

53



© 2016 Adobe Systems Incorporated.  All Rights Reserved.

Purity
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▪ Pure functions always return the same result for the same arguments
▪ No reading and writing of global variables (global constants are okay)
▪ No calling of impure functions
▪ Local transient state, inside the function, may be modified
▪ Anything reachable from the arguments may be modified

Purity
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▪ Pure functions always return the same result for the same arguments
▪ No reading and writing of global variables (global constants are okay)
▪ No calling of impure functions
▪ Local transient state, inside the function, may be modified
▪ Anything reachable from the arguments may be modified
▪ Action to Function Transformation

Purity
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▪ Pure functions always return the same result for the same arguments
▪ No reading and writing of global variables (global constants are okay)
▪ No calling of impure functions
▪ Local transient state, inside the function, may be modified
▪ Anything reachable from the arguments may be modified
▪ Action to Function Transformation
▪ std::sort is pure

Purity
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“It’s not that I’m lazy, it’s that I just don’t care.” 
– Office Space
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Good Code

Good code is correct
Consistent; without contradiction

Good code has meaning
Correspondence to an entity; specified, defined
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Good Code

Good code is correct
Consistent; without contradiction

Good code has meaning
Correspondence to an entity; specified, defined

Good code is efficient
Maximum effect with minimum resources

56



© 2016 Adobe Systems Incorporated.  All Rights Reserved.

Efficiency
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Choice of data structures and algorithms

Choice of what to optimize for

Efficiency
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Efficiency

58

A B C D E F G



© 2016 Adobe Systems Incorporated.  All Rights Reserved.

Efficiency
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template <class ForwardIterator, class N> 
auto reverse_n(ForwardIterator f, N n) { 
    if (n < 2) return next(f, n); 

    auto h = n / 2; 
    auto m1 = reverse_n(f, h); 
    auto m2 = next(m1, n % 2); 
    auto l = reverse_n(m2, h); 
    swap_ranges(f, m1, m2); 
    return l; 
} 

template <class ForwardIterator> 
void reverse(ForwardIterator f, ForwardIterator l) { 
    reverse_n(f, distance(f, l)); 
} 

O(n log n)

Efficiency
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Elements of Programming, 10.3
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Efficiency
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Efficiency
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Simple Word Model
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Simple Word Model

▪ Current Document 
▪ Selection 
▪ Provides a range; an empty range denotes a location
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More Complex Word Model

▪ Need to be able to set the selection in “constant” time 
▪ This would imply a vector data structure 
▪ Also need constant time insert and erase 
▪ This would imply a list data structure 

▪ Solution: a more complex data structure such as a rope
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What is an efficient type?
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What is an efficient type?

▪ A type is complete if the set of provided basis operations allow us to construct and operate on 
any valid, representable value

▪ A type is efficient if the set of basis operations allow for any valid operation to be performed in 
the most efficient way possible for the chosen representation 
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What is an efficient type?

▪ A type is complete if the set of provided basis operations allow us to construct and operate on 
any valid, representable value

▪ A type is efficient if the set of basis operations allow for any valid operation to be performed in 
the most efficient way possible for the chosen representation 

▪ By simply making all data members public, you provide, by definition, an efficient basis 
▪ However, you may fail to protect the invariants of the type, making the approach unsafe 

▪ std::move is both unsafe an inefficient.
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“I don’t smoke, I don’t drink... I recycle...” 
– 50/50
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Good Code

Good code is correct 
Consistent; without contradiction 

Good code has meaning 
Correspondence to an entity; specified, defined 

Good code is efficient 
Maximum effect with minimum resources 

Good code is reusable 
Applicable to multiple problems; general in purpose
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Reusable
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Concrete but of general use, i.e. numeric algorithms, utf conversions, …

Generic when algorithm is useful with different models
Sometimes faster to convert one model to another

Runtime dispatched when types not known at compile time

Reusable
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Reusable
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Minimize client dependencies and intrusive requirements

Separate data structures from algorithms

Reusable
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Reusable
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template <class T, class InputIterator, class OutputIterator>
OutputIterator copy_utf(InputIterator first, InputIterator last,
        OutputIterator result);

const char str[] = u8"Hello World!";
vector<uint16_t> out;
copy_utf<uint16_t>(begin(str), end(str), back_inserter(out));

Reusable
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“You mean we’re in the future.” 
– Back to the Future Part II
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Why Status Quo Will Fail
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“I’ve assigned this problem [binary search] in courses at Bell Labs and IBM. 
Professional programmers had a couple of hours to convert the description into 
a programming language of their choice; a high-level pseudo code was fine… 

Ninety percent of the programmers found bugs in their programs (and I wasn’t 
always convinced of the correctness of the code in which no bugs were found).”

– Jon Bentley, Programming Pearls, 1986

Why Status Quo Will Fail

71



© 2016 Adobe Systems Incorporated.  All Rights Reserved.

int* lower_bound(int* first, int* last, int value) 
{ 
    while (first != last) 
    { 
        int* middle = first + (last - first) / 2; 

        if (*middle < value) first = middle + 1; 
        else last = middle; 
    } 

    return first; 
}

Why Status Quo Will Fail
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Elements of Programming 

Concepts aren’t dead yet in C++ 
Increased interest in new languages and formalisms 
Renewed interest in Communication Sequential Processes 
Renewed interest in Functional Programming ideas 
Rise of Reactive Programming & Functional Reactive Programming

Signs of Hope
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Work Continues

74



© 2016 Adobe Systems Incorporated.  All Rights Reserved.

Generating Reactive Programs for Graphical User Interfaces from Multi-way Dataflow Constraint 
Systems, GPCE 2015, Gabriel Foust, Jaakko Järvi, Sean Parent

One Way To Select Many, ECOOP 2016, Jaakko Järvi, Sean Parent

http://sean-parent.stlab.cc/papers-and-presentations
https://github.com/stlab

Work Continues
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Write Better Code
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