WAL

Better Code

Sean Parent | Principal Scientist

Z

W

bl

Better Code

- Regular Types
Goal: No Incomplete Types
- Algorithms
Goal: No Raw Loops
- Data Structures
Goal: No Incidental Data Structures
- Runtime Polymorphism
Goal: No Raw Pointers

. Concurrency
Goal: No Raw Synchronization Primitives

https://github.com/sean-parent/sean-parent.github.io/wiki/Papers-and-Presentations

2016 Adobe Systems Incorporated. All Rights Reserved. 2 ' ‘
A
AAAAA

https://github.com/sean-parent/sean-parent.github.io/wiki/Papers-and-Presentations

/ /////// Wnl7777/

owledge

© 2016 Adobe Systems Incorporated. All Rights Reserved.

© 2016 Adobe Systems Incorporated. All Rights Reserved.

© 2016 Adobe Systems Incorporated. All Rights Reserved.

© 2016 Adobe Systems Incorporated. All Rights Reserved. '«‘

Adobe

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Northwood

Ruislip

Ethrow Airport

© 2016 Adobe Systems Incorporated. All Rights Reserved. 6 ' ‘
A

Adobe

© 2016 Adobe Systems Incorporated. All Rights Reserved.

(2 3 4 5 6 7 8 9
Cheshunt = /&) Epping
Chesham @Watford Junction =
(<) Chalfont & Enfield Town Theydon Bois
Latimer = Theobalds Grove
A Watford =Watford High Street Bush Hill Debden ==Shenfield
gnersham (S High Barnet Cockfosters Park Turkey Street Lousht [
oughton
Chorleywood Bushey = ‘
Croxley Totteridge & Whetstone Oakwood |/ Southbury @) chingford Buckhurst Hill
Rick th d
ickmanswor &) Carpenders Park @ Woodside Park Southgate égd . - Brentwood
Moor Park (s monton Green Roding Grange
= Hatch End Mill Hill East i Arnos Grove . Valley Hill
Northwood & @ Ve ity = Silver Street f) Highams Park 3
= West Ruislip . . Headstone Lane Edgware Bounds Green Chigwell Harold Wood
orthwood Hills ; hite Hart Lane 3\ : ¢
Stanmore s B ;
Hillingdon Ruislip = Harrow & {3) Finchley Central '3) Woodford Q) Hainault Gidea Park
Pi Wealdstone (&, Burnt Oak Wood Green
Ruislip Manor inner Canons Park (iins (S Haz;rringay = Bruce Grove = Wood Street South Woodford Fairlop (&) Romford=
:) X reen outh Woodfor
Uxbridge Ickenham North Harrow i Colindale East Finchley Turnpike Lane Lanes South Tottenham .
Eastcote Kenton Gueenshury E) A Barkingside ’f‘
. Snaresbrook Emerson Park
=2=Harrow- Preston Hendon Central Highgate | Crouch T h Chadwell
on-the-Hill Road Kingsbury Hill ==Seven ottenham gfacé(horse [P‘le\{(vbury Heath
i q ar
Ruislip Rayners Lane A< Brent Cross Archway Manor House Sisters Walthamstow Redbridge
Gardens West QIEIAIE Gospel 7 Central .
B Harrow Park ; Golders Green Oa':(Wanstead Gants PEEITER B
South Kenton O Hampstead n Upper Holloway Stamford Walth t @‘ Hill Seven Kings U sar==
South Harrow Neasden Hampstead " Hill o Leytonstone
Wembley Park Queen’s Road) Leyton . .
North Wembley o FufnellParkT Arsenal Midland Road Itford Upminster Bridge
South Ruislip L Pollis Hill Finsbury Stoke P
= == Wembley Central () Holloway Road Park= Newington vt T " Manor Park Hornchurch
q Willesden Green Finchl : St. James Street ytonstone § Wanstead
Sudbury Hill Stonebridge Park ne &ep),’-:::a({ E (s Tenp== Rectory igh Road Park Elm Park
5 q q Wood
Harlesden ot \ Kilburn * Caledonian Road Ell,:;rr‘\glz:l;rg' i Dalsto Clapton Leyton Z;Zrt?t Pacr’l‘() grange
ensa Brondesbury . Kingsland
Northolt 0 : : Camden R n 3 == Stratford
ortho Sudbury Town (&) Willesden Junction . Rge Rark West Hampstead z/ Road & & o) Hackney \ International Maryland
i d) J Hackne!
/ Brondesbury Finchley Road Fcamden Town Ca,{igg"f" & & Down*s Centraly Dagenham Heathway
Kensal Green Barnsbury Canonbury n n n &~ ford ==
Swiss Cottage erin < =)) =), ') Stratfor Becontree
Alperton Queen’s Park Kilburn South , Crecaat - Dalston Junction LiomeLen H?I?I'i(:ke 2
High.Road I-rlam;:stead St. John’s Wood King’s Cross = London FieldsT 2 Upney
Greenford St. Pancras Haggerston) Stratford))
= § - Cambridge HeathT High Street , Barking =
Kilburn Park ZPaddington’ Edgware Road Marylebone %= Baker GreatPortland Euston(g))
C Maida Vale s Street = = Bethnal Green . East Ham -~
" T - treet M N Hoxton Pudding Abbey C
Perivale & gel Bethnal Mill Lane Road
Avenue Green Mile End Upton
Ed Warren Street Euston Old Street = Bow Park
Rgov;?jre arren Stree Square £ Road i .
Hanger Lane Royal Oak Farringdon Shoreditch 2 Plaistow
SR Regent’s Park ggzsaerg =z i High Street Stepney Green Bbrorgley- \West
y-Bow
Good Barbican & B'i"_'W N Ham ==
Park Royal Ladbroke Grove Bayswater St?:etge Aldgate Churc
Bond Oxford East Whitechapel
A Street Circus Moorgate i
North Ealing Latimer Road Liverpool @ Star Lane
Marble Arch Tottenham Holborn Chancery Lane Street =
East White Shepherd’s Notting Court Road Langdon Park
Acton City Bush == Hill Gate Bank Aldgate ‘
==Ealing ' Lancaster Covent Garden All Saints $ann|ng
T
Broadway West North 5y -Hettand- Queensway Gate St. Paul's . ewn Royal
Acton Acton Wood Lane Parkf Hyde Park ¢ Green Park Leicester Square Limehouse= pqplar Victoria
yde Park Corner
Piccadill N\
D Acton Central (9 BShﬁl'i’Jllerl?'S X High Street Kensington ircug == Cannon Street Monument Tower Shadwell JE=HEY ELERh el IEa;t Emirates\ Custom House for ExCel.
Ealing Common | ush Market K?gi;r;‘g;?ar} 06 . X . Mansion House = rendﬁ s‘jit Tower = Wapping e RDoyalu(l . P
South Acton (& Goldhawk Road Knightsbridge #Crg::,r;g Gateway T West India A ocks Prince Regent
i Qua
Sogth Barons Gloucester < XBlackfriars River Thames Y West Silvertown Roval Albert
Ealing _Acton Town Hammersmith's? Court Road G == | St-James's) T ~ / l \ y
& Victoria Park Temple / Canary Wharf (‘ ﬁ@%
2 3 3 Beckton Park
& G))
Northfields Chiswick (i Turnham Stamford Ravenscourt West Earl’s South Sloane Westminster Embankment & London Bermondsey Canada North Er::el;tv?risch
Parl Green} Brook Park Kensington Court Kensington Square - I 22&? Water Heron Quays Greenwg Peninsula Cyprus
Boston Manor = =
Waterloo South Qua London Galli Reach
Osterle Gunnersbury y Lo allions Reac
Y == West Brompton (&) - City Airport A
Hounslow East Crossharbour Beckton
King George V
Hounslow Central Southwark Surrey Quays = Mudchute g peore
c"‘) Kew Gardens | Pimlico = Borough
w,el;rt,s[ow Fulham Broadway (&) Lambeth North / Island Gardens K
3 R
2)) Richmond = Parsons Green : \
Heathrow Hatton Cross QR ‘Imperlal Wharf <& @ L
e Putney Bridge & Cutty Sark for = Woolwich
N\ ~a Road Maritime Greenwich <& Arsenal
ueens Roa I
East Putney Vair:;lil Peckham = New Greenwich ==
Elephant & Castle = Cross Gate ~N T
Southfields (g) ew Cross Deptford Bridge
Heathrow
¥ Brockley (&) I
Heathrow Terminal 4 i . == Peckham Rye
Terminal 5 Wimbledon Park &) = Kennington Elverson Road
+ Claph Honor Oak P ‘
@ == Wimbledon (&) Jinction== Road Lewisham ==
Stockwell
Clapham High Street Denmark Hill == Forest
Clapham North) == Sydenh t bol .
e T (e Tt ey to symbols Explanation of zones
. Penge West s
Clapham South Brixton == g Interchange stations 9 7 Stationin Zone 9
= Batham (&) Anerley 5) Step-free access from street to train 8 [stationinZones
I Station in Zone 7
== Crystal Palace : d) Step-free access from street to platform 7
y . Norwood Junction = Q@ P P [Station in both zones
L Tooting Bec | National Rail 6 I station in Zone 6
F
@ West Croydon == | o F
Tooting Broadway Riverboat services 5 [stationinZone 5
4 I Station in Zone 4
Colliers Wood Trams I Station in both zones
South Wimbledon Airport 3 [Station in Zone 3
[Station in Zone 2
M w3 Victoria Coach Station LI | Station in both zones
orden -
Emirates Air Line I | stationin Zone I
© Transport for London January 2016
[2 3 4 5 6 7 ‘ 8 9

© 2016 Adobe Systems Incorporated. All Rights Reserved. 7

A

Adobe

~ e Bovin/g'd;an ' N
7 ~ Kings Langley
‘ e ipherfeld
".‘gi L | ’.,:" ‘
& .
; 'éﬁ .
D
4

Seer Green
A “halfon
' ‘ ~ ‘ r’ St e

ore ,.
h .
~7
~ StGiles k _
, 7
9 LN
| y \p : ’

Ul

N =

) . ‘.MC
. .Stbke
e

)

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Ar B N - . .|.
S5 Eittlé’:efqt By Alde:

Chorle w : "C

9 N / <)

v/ .
" .l: \\ ‘ ’ / :
Croxley Green
(A= /’? ‘

>

I ‘- oy
u - : / W) { 4 . \’
'J "3 i > -’ A \
- wv‘ Chislehurst = = suttdh at
Boiag =it DOl
. arN | //a\ A y\ Ll ' Swanlev p .‘{,;,

Eil’l"‘s'(!)ak~

- .ky’ TS et © My 7 uthority. 'Epping Green ¢ y‘\ﬁ; &
Al I » =~ y e i - B “ag !
(2 ‘ > -) / orth Weald ’ ,
:.':. - q » | (‘ t i‘/' \ | Bassett - Chipping
- Gheshunthh)
125 0@3 Bar',\’i ‘ | ! Z
: 4

: L ' : ~ Ongar
v “ LY) by - o)
SRe SIS IR Eﬁ'ping 'Toot/l-lill\jﬁ :

ML - - .4‘. ‘ "‘ \'/Bil o \1

- EEE N P / - 2

: A Y 2 *X

— y - > A
oo\ S U\ e
y "' N\ i &, - hol

7 e AR ' "N)a’(yeét;b'f‘.
| gey ' “Side

\bridge. :
£ spfor L

\. R ‘_ Abbotts \
e '\

7 SH ' N
Loy
SO

— 2\

) ! — ‘v_

~
-
F
~
4
o
o
-
i
- -

-,

A

') A4l INTVWUalT ouccu Author"y E in Green
Bovingdon \ lﬁ(PPINg
Kings Langley P §°\ NOéth Weald Chl -
Chesham TR o fbbolts Goff's Oak i3 assett Or':garg
Chipperfiel angiey N)
BOttas Bal Chesh'unt Epping Toot Hill
: LEAVESDEN fadletr Shenley e 3in
A - Sarratt Abbey,
mMesaaany
i L1t Aldenham Kelvedor
' Hatch
ChoMgywood Watford _ Borehamwood Barnet - P‘ Loughton Na\rsqgtock
. - i ide
Croxleygdfeen - Bushey FEistree S A10 y Abridge Stapleford
_ - ‘
n Chalfont <4 EAST BARNG o & Lambourne
il] y BuckhurstHill Chigwell End Noak i 4
5 oak Hi i
Seer Green Stanmores - > /
Chalfont 7Y fdgware A406 I
St Peter L NorthWwood - A10 A
’ : M1 P
Beaconsfield ~ Harefield | A12
. \ . . Ngner &
- ikl Lé?‘ j ‘4 WALTHAMSTOW %ﬂmf
- \# ¥ el
Gerrards Cross “ HReAY "2\ < A12
=~ ‘\“‘ Ruislig] SBAENT CPgS \ , 'BURY PARK Romford
Colne Valley A s B e N
' 4 Regional Park B 1106)
Fulmer™Xn - ‘ STOKE
= A40 NEWINGTON liford *
Stoke Poges Uxbig
urnham Vs —— ~ Barki
’ reenford
et \‘;) Hayes [A312] oY - : —— fSicham 3
- Slough - < Y a5 —
Y ——— West Drayton S 2 ‘3% ,
.) & . B el - wh i, Aveley
\/‘ /P g 2 = < WabtwicH " i' \
DA HE I - 'Harmondsworth ' (A312] Brentford" ropmc - Purfleet..
Windsor *" > - 4 1K - -~ Erith ,
: = [A30 L N
< ~ Heathrow Airpor ’ A — .
AL ~ B { - [A282 |
Old Windsor. - . Stanwel Hounslow Richrffond BRIFTON welling)
'}.ﬁ ' /\ ?/t'llllwiCh Horn Park Bexleyheath . =
. . 4 ; A214 illage
s> ' Feltham Twickenham Richmond ® | 29 Dartford .
- ‘ - -~ Park A FOREST HILL 220 \ Bexley 3 {
o ~ WEST NORWOOD Sidcup s
- N : [A23 | »
3 \ \ WIMBLEDON . v '
: i 2305 . Kingston Chislehurst | Sutton at Hone
. “=+~ EEHE upon Thames) s @
t Virginia Water >E o ' Mitcham Bromley 420
: ' East Molese New Malden - | |
- Y\ ~Loady [y) Th_orqtlon l Swanlev ’
© 2016 Adobe Systems Incorporated. All Rights Reserved. 8 ' ‘

Adobe

A

"There are r
~The B

V7 L

| ower Bound

template <class ForwardIterator, class T, class Compare>

ForwardIterator lower bound(ForwardIterator first, ForwardIterator last,

const T& value, Compare comp)

{

auto n = distance(first, last);

while (n !
auto h
auto m
if (comp(*m, value)) {
first = next(m):
-=h + 1;

I3 else {n=h;}
+

return first:

© 2016 Adobe Systems Incorporated. All Rights Reserved.

F\\

Adobe

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Undo Typing

Cut
Copy

Paste
Paste Special...

Clear
Select All

Find

Start Dictation
Emoji & Symbols

3k Z

gb X
& C

bV
~FV

HA

fnfn
~ 3 Space

11

0N

Adobe

Menu
ltem

© 2016 Adobe Systems Incorporated. All Rights Reserved. 12 ' ‘
A

Adobe

Menu
ltem

State

© 2016 Adobe Systems Incorporated. All Rights Reserved. 13 ' ‘
A

Adobe

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Menu
ltem

State

14

State’

F\\

Adobe

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Undo Typing

Cut
Copy

Paste
Paste Special...

Clear
Select All

Find

Start Dictation
Emoji & Symbols

3k Z

gb X
& C

bV
~FV

HA

fnfn
~ 3 Space

15

0N

Adobe

Good Code

Good code is correct

© 2016 Adobe SystemsJdncorporated. All Rights Reserved. Adobe Confidential.

ﬁ.‘p‘
A -

>

"/

Good Code

Good code is correct
Consistent: without contradiction

© 2016 Adobe SystemsJdncorporated. All Rights Reserved. Adobe Confidential.

&
A -

Simple Bug

void print_string(const charx s) {
while (ks !'= '"\0') {
cout << *S++;
}

h

int main() {
print_string(nullptr);
¥

© 2016 Adobe Systems Incorporated. All Rights Reserved.

F\\

Adobe

Simple Bug

void print_string(const charx s) {

while (*xs !'= '"\@0') { Thread 1: EXC BAD ACCESS (code=1, address=0x0)
cout << *S++;
s

}

int main() {
print_string(nullptr);
}

© 2016 Adobe Systems Incorporated. All Rights Reserved. 18

F\\

Adobe

Simple Bug

void print_string(const charx s) {
while (ks !'= '"\0') {
cout << *S++;
}

h

int main() {
print_string(nullptr);
¥

© 2016 Adobe Systems Incorporated. All Rights Reserved. 19

F\\

Adobe

Simple Bug

void print_string(const charx s) {
while (ks !'= '"\0') {
cout << *S++;
}

h

int main() {
print_string(nullptr); // FORCE CRASH!
}

© 2016 Adobe Systems Incorporated. All Rights Reserved. 19

F\\

Adobe

Subtle defects

© 2016 Adobe Systems Incorporated. All Rights Reserved. '
A\

Adobe

Subtle defects

Consistency requires context

© 2016 Adobe Systems Incorporated. All Rights Reserved.

Subtle defects

Consistency requires context

template<class T> const T& min(const T& a, const T& b);

Re

Re

urns: T

Marks:

€ S

maller value.

Retu

rns the first argument when the arguments are equivalent.

© 2016 Adobe Systems Incorporated. All Rights Reserved.

F\\

Adobe

Subtle defects

Consistency requires context

template<class T> const T& min(const T& a, const T& b);
Returns: The smaller value.

Remarks: Returns the first argument when the arguments are equivalent.

template<class T> const T& max(const T& a, const T& b);
Returns: The larger value.

Remarks: Returns the first argument when the arguments are equivalent.

© 2016 Adobe Systems Incorporated. All Rights Reserved.

F\\

Adobe

Subtle defects

© 2016 Adobe Systems Incorporated. All Rights Reserved. '
A\

Adobe

Subtle defects

template<typename T>

const T& clamp(const T& a, const T& lo, const T& hi)
1

}

return min(max(lo, a), hi);:

© 2016 Adobe Systems Incorporated. All Rights Reserved.

F\\

Adobe

Subtle defects

template<typename T>
const T& clamp(const T& a, const T& lo, const T& hi)
1

}

return min(max(lo, a), hi);:

template<typename T, typename Compare>
const T& clamp(const T& a, const T& lo, const T& hi, Compare comp)

{
}

return min(max(lo, a, comp), hi, comp);

© 2016 Adobe Systems Incorporated. All Rights Reserved. '
\

Adobe

Subtle defects

© 2016 Adobe Systems Incorporated. All Rights Reserved. '
A\

Adobe

Subtle defects

int main() <1
using pair = pair<int, string>;

pair a = { 1, "OK" };
pair lo = { 1, "FAIL: LO" };
pair hi = { 2, "FAIL: HI" };

a = clamp(a, lo, hi, []l(const auto& a, const auto& b) {
return a.first < b.first;
) ;

cout << a.second << endl:

© 2016 Adobe Systems Incorporated. All Rights Reserved. '«‘

Adobe

Subtle defects

int main() <1
using pair = palr<int, string>;

pair a = { 1, "OK" };
pair lo = { 1, "FAIL: LO" };
pair hi = { 2, "FAIL: HI" };

a = clamp(a, lo, hi, [l(const auto& a, const auto& b) {
return a.first < b.first;

1) ;

cout << a.second << endl:
b
FAIL: LO

© 2016 Adobe Systems Incorporated. All Rights Reserved.

F\\

Adobe

Subtle defects

© 2016 Adobe Systems Incorporated. All Rights Reserved. '
A\

Adobe

Subtle defects

template<typename T>

const T& clamp(const T& a, const T& lo, const T& hi)
1

}

return min(max(a, lo), hi);:

© 2016 Adobe Systems Incorporated. All Rights Reserved.

F\\

Adobe

Subtle defects

template<typename T>
const T& clamp(const T& a, const T& lo, const T& hi)
1

}

return min(max(a, lo), hi);:

template<typename T, typename Compare>
const T& clamp(const T& a, const T& lo, const T& hi, Compare comp)

{
}

return min(max(a, lo, comp), hi, comp);

© 2016 Adobe Systems Incorporated. All Rights Reserved. '
\

Adobe

Subtle defects

© 2016 Adobe Systems Incorporated. All Rights Reserved. '
A\

Adobe

Subtle defects

template<class T> const T& min(const T& a, const T& b);
Returns: The smaller value.

Remarks: Returns the first argument when the arguments are equivalent.

template<class T> const T& max(const T& a, const T& b);
Returns: The larger value.

Remarks: Returns the second argument when the arguments are equivalent.

© 2016 Adobe Systems Incorporated. All Rights Reserved. '
\

Adobe

Subtle defects

template<class T> const T& min(const T& a, const T& b);
Returns: The smaller value.

Remarks: Returns the first argument when the arguments are equivalent.

template<class T> const T& max(const T& a, const T& b);
Returns: The larger value.

Remarks: Returns the second argument when the arguments are equivalent.

template <class T> const T& max(const T& a, const T& b, const T& ¢);
Returns: The larger value.

Remarks: 227

© 2016 Adobe Systems Incorporated. All Rights Reserved. '
\

Adobe

Rules are Contentious

© 2016 Adobe Systems Incorporated. All Rights Reserved. '
A\

Adobe

Rules are Contentious

‘Names should not be associated with semantics because everybody has their

own hidden assumptions about what semantics a

comprehension problems without kr
write code to reflect what code is actua

OW

ly G

ng why. This
oing, rather t

nan wha

it's hard to have conceptual clashes about what code actua
- Craig Silverstein, Google

© 2016 Adobe Systems Incorporated. All Rights Reserved.

‘e, and they clash, causing
is why it's valuable to

- code ‘'means:

ly does!

AAAAA

))

A
"There is no spoon
- The Matrix

Vg7 L

How can nothing be something?

© 2016 Adobe Systems Incorporated. All Rights Reserved. 27 '
A\

AAAAA

How can nothing be something?

int Xx:

© 2016 Adobe Systems Incorporated. All Rights Reserved. 27 '
A\

AAAAA

How can nothing be something?

int Xx:
// 1ndeterminate value

© 2016 Adobe Systems Incorporated. All Rights Reserved. 27 '«‘

Adobe

How can nothing be something?

int Xx:
// 1ndeterminate value

int x =1/ 0:

© 2016 Adobe Systems Incorporated. All Rights Reserved. 27 '«‘

Adobe

How can nothing be something?
int Xx:
// 1ndeterminate value

int x =1/ 0:
// undefined behavior

© 2016 Adobe Systems Incorporated. All Rights Reserved. 27 ' ‘
A
Adobe

How can nothing be something?

int Xx:
// 1ndeterminate value

int x =1/ 0:
// undefined behavior

double x = 1.0 / 0.0:

© 2016 Adobe Systems Incorporated. All Rights Reserved. 27 ' ‘
A
Adobe

How can nothing be something?

int Xx:
// 1ndeterminate value

int x =1/ 0:
// undefined behavior

double x = 1.0 / 0.0:
// 1inf

© 2016 Adobe Systems Incorporated. All Rights Reserved. 27 ' ‘
A
Adobe

How can nothing be something?

int Xx:
// 1ndeterminate value

int x =1/ 0:
// undefined behavior

double x = 1.0 / 0.0:
// 1inf

double X 0.0 / 0.0;

© 2016 Adobe Systems Incorporated. All Rights Reserved. 27 ' ‘
A
Adobe

How can nothing be something?

int Xx:
// 1ndeterminate value

int x =1/ 0:
// undefined behavior

double x = 1.0 / 0.0:
// 1inf

double X 0.0 / 0.0;

// NaN

© 2016 Adobe Systems Incorporated. All Rights Reserved. 27 ' ‘
A
Adobe

How can nothing be something?

int Xx:
// 1ndeterminate value

int x =1/ 0:
// undefined behavior

double x = 1.0 / 0.0:
// 1inf

double X 0.0 / 0.0;

// NaN

struct empty { };

© 2016 Adobe Systems Incorporated. All Rights Reserved. 27 ' ‘
A
Adobe

How can nothing be something?

int Xx:
// 1ndeterminate value

int x =1/ 0:
// undefined behavior

double x = 1.0 / 0.0:
// 1inf

double X 0.0 / 0.0;

// NaN

struct empty { };
// sizeof(empty) ==

© 2016 Adobe Systems Incorporated. All Rights Reserved. 27 ' ‘
A
Adobe

How can nothing be something?

© 2016 Adobe Systems Incorporated. All Rights Reserved. '
A\

AAAAA

How can nothing be something?

int al0];

© 2016 Adobe Systems Incorporated. All Rights Reserved. '
A\

AAAAA

How can nothing be something?

int a[0@];
// Error

2016 Adobe Systems Incorporated. All Rights Reserved. '~‘

AAAAA

How can nothing be something?

int al0]:
// Error
// but common extension

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int al0Q];

// Error

// but common extension
using empty = int[0];

© 2016 Adobe Systems Incorporated. All Rights Reserved. "‘

Adobe

How can nothing be something?

int al0Q];

// Error

// but common extension
using empty = int[0];
// sizeof(empty) ==
empty al2];

© 2016 Adobe Systems Incorporated. All Rights Reserved. '«‘

Adobe

How can nothing be something?

int al0Q];

// Error

// but common extension
using empty = int[0];
// sizeof(empty) ==
empty al2];

// &al0] == &al1l]

© 2016 Adobe Systems Incorporated. All Rights Reserved. ' ‘
[\
Adobe

How can nothing be something?

int al0Q];

// Error

// but common extension
using empty = int[0];
// sizeof(empty) ==
empty al2];

// &al0] == &al1l]

void f() { return void(): }

© 2016 Adobe Systems Incorporated. All Rights Reserved. ' ‘
[\
Adobe

How can nothing be something?

int al0Q];

// Error

// but common extension
using empty = int[0];
// sizeof(empty) ==
empty al2];

// &al0] == &al1l]

void f() { return void(): }
// OK

© 2016 Adobe Systems Incorporated. All Rights Reserved. ' ‘
[\
Adobe

How can nothing be something?

int al0Q];

// Error

// but common extension
using empty = int[0];
// sizeof(empty) ==
empty al2];

// &al0] == &al1l]

void f() { return void(): }
// OK

void x = f():

© 2016 Adobe Systems Incorporated. All Rights Reserved. ' ‘
[\
Adobe

How can nothing be something?

int al0Q];

// Error

// but common extension
using empty = int[0];
// sizeof(empty) ==
empty al2];

// &al0] == &al1l]

void f() { return void(): }
// OK

void x = f():
// Error

© 2016 Adobe Systems Incorporated. All Rights Reserved.

F\\

Adobe

How can nothing be something?

int al0Q];

// Error

// but common extension
using empty = int[0];
// sizeof(empty) ==
empty al2];

// &al0] == &al1l]

void f() { return void(): }
// OK

void x = f();
// Error
// but voidx is a pointer to anything..

© 2016 Adobe Systems Incorporated. All Rights Reserved. '«‘

Adobe

How can nothing be something?

© 2016 Adobe Systems Incorporated. All Rights Reserved. '
A\

AAAAA

How can nothing be something?

{1, 2, 3 };

std::vector<int> X
try o
X.1insert(x.begin(), 0);
} catch (...) {
stdiicout << X.size() << std:iiendl;
+

© 2016 Adobe Systems Incorporated. All Rights Reserved. ' ‘
L\
Adobe

How can nothing be something?

std::vector<int> x = { 1, 2, 3 };
try {

X.1insert(x.begin(), 0);
} catch (...) {

stdricout << x.size() << std::endl;
+

// Basic Exception Guarantee:
// Valid but unspecified

© 2016 Adobe Systems Incorporated. All Rights Reserved. ' ‘
[\
Adobe

How can nothing be something?

std::vector<int> X
try o
X.1insert(x.begin(), 0);
} catch (...) {
stdricout << x.size() << std::endl;
+

// Basic Exception Guarantee:
// Valid but unspecified

{1, 2, 3 };

std::vector<int> y = std::move(x);

© 2016 Adobe Systems Incorporated. All Rights Reserved. ' ‘
[\
Adobe

How can nothing be something?

std::vector<int> X
try o
X.1insert(x.begin(), 0);
} catch (...) {
stdricout << x.size() << std::endl;
s

// Basic Exception Guarantee:
// Valid but unspecified

{1, 2, 3 };

std::vector<int> y = std::move(x);
// Moved from object, x, 1s valid but unspecified

© 2016 Adobe Systems Incorporated. All Rights Reserved. ' ‘
[\
Adobe

Good Code

© 2016 Adobe SystemsJdncorporated. All Rights Reserved. Adobe Confidential.

Py
A -

L

"/

Good Code

Good code is correct
Consistent: without contradiction

© 2016 Adobe SystemsJdncorporated. All Rights Reserved. Adobe Confidential.

&
A -

"/

Good Code

Good code is correct
Consistent: without contradiction

Good code has meaning

© 2016 Adobe SystemsJdncorporated. All Rights Reserved. Adobe Confidential.

&
A -

Good Code

Good code is correct
Consistent: without contradiction

Good code has meaning
Correspondence to an entity; specified, defined

© 2016 Adobe SystemsJdncorporated. All Rights Reserved. Adobe Confidential.

e
A -

Menu
ltem

© 2016 Adobe Systems Incorporated. All Rights Reserved. 31 ' ‘
A

Adobe

Categories of nothing

© 2016 Adobe Systems Incorporated. All Rights Reserved. '
A\

AAAAA

Categories of nothing

Absence of something
0,9, 1p, p), void

© 2016 Adobe Systems Incorporated. All Rights Reserved. "‘

Categories of nothing

Absence of something
0,9, 1p, p), void

Absence of meaning
NaN, undefined, indeterminate

© 2016 Adobe Systems Incorporated. All Rights Reserved. '«‘

AAAAA

How can nothing be something?

© 2016 Adobe Systems Incorporated. All Rights Reserved. 33 '
A\

AAAAA

How can nothing be something?

int Xx:

© 2016 Adobe Systems Incorporated. All Rights Reserved. 33 '
A\

AAAAA

How can nothing be something?

int Xx:
// Partially formed; assign value or destruct

© 2016 Adobe Systems Incorporated. All Rights Reserved. 33 "‘

Adobe

How can nothing be something?

int Xx:
// Partially formed; assign value or destruct

int x =1/ 0:

© 2016 Adobe Systems Incorporated. All Rights Reserved. 33 '«‘

Adobe

How can nothing be something?

int Xx:
// Partially formed; assign value or destruct

int x =1/ 0;
// undefined behavior; reading from meaningless value

© 2016 Adobe Systems Incorporated. All Rights Reserved. 33 ' ‘
A
Adobe

How can nothing be something?

int Xx:
// Partially formed; assign value or destruct

int x =1/ 0;
// undefined behavior; reading from meaningless value

double x = 1.0 / 0.0:

© 2016 Adobe Systems Incorporated. All Rights Reserved. 33 ' ‘
A
Adobe

How can nothing be something?

int Xx:
// Partially formed; assign value or destruct

int x =1/ 0;
// undefined behavior; reading from meaningless value

double x = 1.0 / 0.0;
// 1intf; 0K, approximation for underf low

© 2016 Adobe Systems Incorporated. All Rights Reserved. 33 ' ‘
A
Adobe

How can nothing be something?

int Xx:
// Partially formed; assign value or destruct

int x =1/ 0;
// undefined behavior; reading from meaningless value

double x = 1.0 / 0.0;
// 1intf; 0K, approximation for underf low

double X 0.0 / 0.0;

© 2016 Adobe Systems Incorporated. All Rights Reserved. 33 ' ‘
A
Adobe

How can nothing be something?

int Xx:
// Partially formed; assign value or destruct

int x =1/ 0;
// undefined behavior; reading from meaningless value

double x = 1.0 / 0.0;
// 1intf; 0K, approximation for underf low

double x = 0.0 / 0.0;
// NaN; OK, though undefined behavior would also be

© 2016 Adobe Systems Incorporated. All Rights Reserved. 33 ' ‘
A
Adobe

How can nothing be something?

int Xx:
// Partially formed; assign value or destruct

int x =1/ 0;
// undefined behavior; reading from meaningless value

double x = 1.0 / 0.0;
// 1intf; 0K, approximation for underf low

double x = 0.0 / 0.0;
// NaN; OK, though undefined behavior would also be

© 2016 Adobe Systems Incorporated. All Rights Reserved. 33 ' ‘
A
Adobe

How can nothing be something?

int Xx:
// Partially formed; assign value or destruct

int x =1/ 0;
// undefined behavior; reading from meaningless value

double x = 1.0 / 0.0;
// 1intf; 0K, approximation for underf low

double x = 0.0 / 0.0;
// NaN; OK, though undefined behavior would also be

struct empty : void { };

© 2016 Adobe Systems Incorporated. All Rights Reserved. 33 ' ‘
A
Adobe

How can nothing be something?

int Xx:
// Partially formed; assign value or destruct

int x =1/ 0;
// undefined behavior; reading from meaningless value

double x = 1.0 / 0.0;
// 1intf; 0K, approximation for underf low

double x = 0.0 / 0.0;
// NaN; OK, though undefined behavior would also be

struct empty : void { };
// sizeof(empty) == 0;

© 2016 Adobe Systems Incorporated. All Rights Reserved. 33 ' ‘
A
Adobe

How can nothing be something?

© 2016 Adobe Systems Incorporated. All Rights Reserved. '
A\

AAAAA

How can nothing be something?

int al0];

© 2016 Adobe Systems Incorporated. All Rights Reserved. '
A\

AAAAA

How can nothing be something?

int al0Q];
// OK

2016 Adobe Systems Incorporated. All Rights Reserved. '~‘

AAAAA

How can nothing be something?

int al[0];:

// OK
using empty = int[0];

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int al[0];

// OK

using empty = int[0];
// sizeof(empty) == 0
empty al2];

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int al[0];

// OK

using empty = int[0];
// sizeof(empty) == 0
empty al2];

// & l0] == &all]

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int al[0];

// OK

using empty = int[0];
// sizeof(empty) == 0
empty al2];

// & l0] == &all]

void f() { return void(): }

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int al[0];

// OK

using empty = int[0];
// sizeof(empty) == 0
empty al2];

// & l0] == &all]

void f() { return void(): }
// OK

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int al[0];:

// OK

using empty = int[0];
// sizeof(empty) == 0
empty al2];

// & l0] == &all]

void f() { return void(): }
// OK

void x = f():

© 2016 Adobe Systems Incorporated. All Rights Reserved.

How can nothing be something?

int al[0];

// OK

using empty = int[0];
// sizeof(empty) == 0
empty al2];

// & l0] == &all]

void f() { return void(): }
// OK

void x = f():

// OK
// voidx is OK

© 2016 Adobe Systems Incorporated. All Rights Reserved. ' ‘
[\
Adobe

How can nothing be something?

© 2016 Adobe Systems Incorporated. All Rights Reserved. '
A\

AAAAA

How can nothing be something?

{1, 2, 3 };

std::vector<int> X
try o
X.1insert(x.begin(), 0);
} catch (...) {
stdiicout << X.size() << std:iiendl;
+

© 2016 Adobe Systems Incorporated. All Rights Reserved. ' ‘
L\
Adobe

How can nothing be something?

std::vector<int> x

try {
X.1insert(x.begin(), 0);

} catch (...) {
stdricout << x.size() << std::endl;
s

// Basic Exception Guarantee:
// Partially formed object. Reading is undefined behavior

{1, 2, 3 };

© 2016 Adobe Systems Incorporated. All Rights Reserved. ' ‘
[\
Adobe

How can nothing be something?

std::vector<int> X
try o
X.1insert(x.begin(), 0);
} catch (...) {
stdricout << x.size() << std::endl;
s

// Basic Exception Guarantee:
// Partially formed object. Reading is undefined behavior

{1, 2, 3 };

std::vector<int> y = std::move(x);

© 2016 Adobe Systems Incorporated. All Rights Reserved. ' ‘
[\
Adobe

How can nothing be something?

std::vector<int> X
try o
X.1insert(x.begin(), 0);
} catch (...) {
stdricout << x.size() << std::endl;
s

// Basic Exception Guarantee:
// Partially formed object. Reading is undefined behavior

{1, 2, 3 };

std::vector<int> y = std::move(x);
// Moved from object, x, 1s partially formed

© 2016 Adobe Systems Incorporated. All Rights Reserved. ' ‘
[\
Adobe

A

“What's in the box?"
— Seve

Vv L

The Permutation Paradox

/.

© 2016 Adobe Systems Incorporated. All Rights Reserved. '«‘

AAAAA

The Permutation Paradox

© 2016 Adobe Systems Incorporated. All Rights Reserved. '«‘

AAAAA

The Permutation Paradox

© 2016 Adobe Systems Incorporated. All Rights Reserve

d.

7?7

AAAAA

The Permutation Paradox

nothing = unsafe

2016 Adobe Systems Incorporated. All Rights Reserved.

7?7

AAAAA

The Permutation Paradox

nothing = unsafe

something = inefficient

2016 Adobe Systems Incorporated. All Rights Reserved.

7?7

AAAAA

The Permute

© 2016 Adobe Systems Incorporated. All Rights Reserved.

tion Pc

dox

F\\

Adobe

The Permutation Paradox

"There is a duality between transtormations and the corresponding actions: An action is
definable in terms of a transformation and vice versa:

© 2016 Adobe Systems Incorporated. All Rights Reserved. "‘

AAAAA

The Permutation Paradox

"There is a duality between transtormations and the corresponding actions: An action is
definable in terms of a transformation and vice versa:

void a(T& x) { x = f(x); } // action from transformation

and

T f(T x) {1 a(x); return x; } // transformation from action

© 2016 Adobe Systems Incorporated. All Rights Reserved. '
A\

Adobe

The Permutation Paradox

"There is a duality between transform
definable in terms o

T f(T x) { a(x);

Despite this du

© 2016 Adobe Systems Incorporated. All Rights Reserve

void a(T& x) { x = f(x); } // action from transformation

ality, inde
Dot

bendent impleme

return X;

and

N action and trans

‘ormation need to

Ntations are somet

ations and the corresponding actions: An action is
3 transformation and vice versa:

1 // transformation from action

be provided!

mes more efficient, in which case

— Elements of Programming (section 2.5)

AAAAA

7 /////////%f/ﬂfl /777

Its not that 'm lazy, it's that | just don't care’

Good Code

© 2016 Adobe SystemsJdncorporated. All Rights Reserved. Adobe Confidential.

Py
A -

L

Good Code

Good code is correct
Consistent: without contradiction

Good code has meaning
Correspondence to an entity; specified, defined

© 2016 Adobe SystemsJdncorporated. All Rights Reserved. Adobe Confidential.

e
A -

Good Code

Good code is correct
Consistent: without contradiction

Good code has meaning
Correspondence to an entity; specified, defined

Good code is efficient

© 2016 Adobe SystemsJdncorporated. All Rights Reserved. Adobe Confidential.

e
A -

Good Code

Good code is correct
Consistent: without contradiction

Good code has meaning
Correspondence to an entity; specified, defined

Good code is efficient
Maximum effect with minimum resources

© 2016 Adobe SystemsJdncorporated. All Rights Reserved. Adobe Confidential.

rd
A -

Efficiency

© 2016 Adobe Systems Incorporated. All Rights Reserved. '
A\

Adobe

Efficiency

Choice of data structures and algorithms

Choice of what to optimize for

© 2016 Adobe Systems Incorporated. All Rights Reserved. '«‘

AAAAA

Efficiency

© 2016 Adobe Systems Incorporated. All Rights Reserved. '«‘

Adobe

Efficiency

© 2016 Adobe Systems Incorporated. All Rights Reserved. '«‘

AAAAA

Efficiency

© 2016 Adobe Systems Incorporated. All Rights Reserved. '
A\

Adobe

Efficiency

template <class ForwardIterator>
void reverse(ForwardIterator f, ForwardIterator 1) {
auto n = distance(f, 1);

if (n == || n == 1) return;
auto m = next(f, n / 2);
reverse(f, m);

reverse(m, 1);
rotate(f, m, 1);

© 2016 Adobe Systems Incorporated. All Rights Reserved. '«‘

Adobe

Efficiency

template <class ForwardIterator>
void reverse(ForwardIterator f, ForwardIterator 1) {
auto n = distance(f, 1);
if (n == || n == 1) return;
auto m = next(f, n / 2);
reverse(f, m);

reverse(m, 1);
rotate(f, m, 1);

O(n log n)

© 2016 Adobe Systems Incorporated. All Rights Reserved. "‘

Adobe

Efficiency

© 2016 Adobe Systems Incorporated. All Rights Reserved. '«‘

Adobe

Efficiency

© 2016 Adobe Systems Incorporated. All Rights Reserved. '«‘

AAAAA

Simple Word Modael

M ov- = -

Insert Design Layout References Mailings Review View

o . — S R

e |

Paste & B I U -~ abe X; x2 &":’"A' = == .

Hello World!

© 2016 Adobe Systems Incorporated. All Rights Reserved. 46 ' ‘
A
Adobe

Simple Word Modael

- Current Document
- Selection

- Provides a range; an empty range denotes a location

Current Document

© 2016 Adobe Systems Incorporated. All Rights Reserved.

47

Selection

F\\

Adobe

More Complex Word Model

- Need to be able to set the selection in “constant” time

- This would imply a vector data structure
- Also need constant time insert and erase
- This would imply a list data structure

- Solution: a more complex data structure such as a rope

© 2016 Adobe Systems Incorporated. All Rights Reserved.

48

AAAAA

/. /////////%f/ﬂfl /777

'l don't smoke, | don't drink.. I recycle.!

SSSSS

Good Code

Good code is correct
Consistent: without contradiction

Good code has meaning
Correspondence to an entity; specified, defined

Good code is efficient
Maximum effect with minimum resources

Good code is reusable
Applicable to multiple problems; general in purpose

© 2016 Adobe Systems.ncorporated. All Rights Reserved. Adobe Confidential.

Fd

- —

Reusable

© 2016 Adobe Systems Incorporated. All Rights Reserved. '
A\

Adobe

Reusable

Concrete but of general use, i.e. numeric algorithms, utt conversions, ...

Generic when algorithm is useful with different models
Sometimes faster to convert one model to another

Runtime dispatched when types not known at compile time

2016 Adobe Systems Incorporated. All Rights Reserved. ' ‘
&

AAAAA

Reusable

© 2016 Adobe Systems Incorporated. All Rights Reserved. '
A\

Adobe

Reusable

Minimize client dependencies and intrusive requirements

Separate data structures from algorithms

© 2016 Adobe Systems Incorporated. All Rights Reserved. '«‘

Adobe

Reusable

© 2016 Adobe Systems Incorporated. All Rights Reserved. '
A\

Adobe

Reusable

template <class T, class InputIterator, class OutputlIterator>

OutputIterator copy utf(InputIterator first, InputlIterator last,
OutputIterator result);

const char str[] = u8"Hello World!'";
vector<uintle t> out;

copy_utf<uintl6_t>(begin(str), end(str), back_inserter(out));

© 2016 Adobe Systems Incorporated. All Rights Reserved.

F\\

Adobe

7 /////////%f/ﬂfl /777

You mean vve re in the future!’

Why Status Quo Will Fail

© 2016 Adobe Systems Incorporated. All Rights Reserved. '
A\

AAAAA

Why Status Quo Will Fail

()

Professional programmers had a couple

Ninety percent of the programmers fou
always convinced of the correctness of t

© 2016 Adobe Systems Incorporated. All Rights Reserved.

ve assigned this problem [binary search] in courses at Bell Labs and IBM.

of hours to convert the description into
a programming language of their choice; a high-level pseudo code was fine...

nd bugs in their programs (and | wasn't

ne code in which no bugs were founc

;

— Jon Bentley, Programming Pearls, 1986

AAAAA

Why Status Quo Will Fail

intx lower bound(int*x first, intx last, int value)

1
while (first != last)

1
intx middle = first + (last - first) / 2:
if (*kmiddle < value) first = middle + 1;
else last = middle;

+

return first:

AAAAA

Signs of Hope
Flements of Programming

Concepts aren't dead yet in C++

ncreased interest in new languages and formalisms

Renewed Interest in Communication Sequential Processes
Renewed interest in Functional Programming ideas

Rise of Reactive Programming & Functional Reactive Programming

© 2016 Adobe Systems Incorporated. All Rights Reserved.

fA

Adobe

Work Continues

© 2016 Adobe Systems Incorporated. All Rights Reserved. '
A\

Adobe

Work Continues

Generating Reactive Programs for Graphical User Interfaces from Multi-way Dataflow Constraint
Systems, GPCE 2015, Gabriel Foust, Jaakko Jarvi, Sean Parent

One Way To Select Many, ECOOP 2016, Jaakko Jarvi, Sean Parent

https://github.com/sean-parent/sean-parent.github.io/wiki/Papers-and-Presentations
https://github.com/stlab

2016 Adobe Systems Incorporated. All Rights Reserved. ' ‘
&

AAAAA

https://github.com/sean-parent/sean-parent.github.io/wiki/Papers-and-Presentations
https://github.com/stlab

B AN A. RN AV VAN ITOE, . " JHEIN

