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Better Code

- Regular Types
Goal: No Incomplete Types
- Algorithms
Goal: No Raw Loops
- Data Structures
Goal: No Incidental Data Structures
- Runtime Polymorphism
Goal: No Raw Pointers

. Concurrency
Goal: No Raw Synchronization Primitives
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| ower Bound

template <class ForwardIterator, class T, class Compare>

ForwardIterator lower bound(ForwardIterator first, ForwardIterator last,

const T& value, Compare comp)

{

auto n = distance(first, last);

while (n !
auto h
auto m
if (comp(*m, value)) {
first = next(m):
-=h + 1;

I3 else {n=h;}
+

return first:
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Good Code

Good code is correct
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Good Code

Good code is correct
Consistent: without contradiction
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Simple Bug

void print_string(const charx s) {
while (ks !'= '"\0') {
cout << *S++;
}

h

int main() {
print_string(nullptr);
¥
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Simple Bug

void print_string(const charx s) {

while (*xs !'= '"\@0') { Thread 1: EXC BAD ACCESS (code=1, address=0x0)
cout << *S++;
s

}

int main() {
print_string(nullptr);
}
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Simple Bug

void print_string(const charx s) {
while (ks !'= '"\0') {
cout << *S++;
}

h

int main() {
print_string(nullptr);
¥
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Simple Bug

void print_string(const charx s) {
while (ks !'= '"\0') {
cout << *S++;
}

h

int main() {
print_string(nullptr); // FORCE CRASH!
}
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Subtle defects
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Subtle defects

Consistency requires context
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Subtle defects

Consistency requires context

template<class T> const T& min(const T& a, const T& b);

Re

Re

urns: T

Marks:

€ S

maller value.

Retu

rns the first argument when the arguments are equivalent.
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Subtle defects

Consistency requires context

template<class T> const T& min(const T& a, const T& b);
Returns: The smaller value.

Remarks: Returns the first argument when the arguments are equivalent.

template<class T> const T& max(const T& a, const T& b);
Returns: The larger value.

Remarks: Returns the first argument when the arguments are equivalent.

© 2016 Adobe Systems Incorporated. All Rights Reserved.
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Subtle defects

© 2016 Adobe Systems Incorporated. All Rights Reserved. '
A\

Adobe



Subtle defects

template<typename T>

const T& clamp(const T& a, const T& lo, const T& hi)
1

}

return min(max(lo, a), hi);:
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Subtle defects

template<typename T>
const T& clamp(const T& a, const T& lo, const T& hi)
1

}

return min(max(lo, a), hi);:

template<typename T, typename Compare>
const T& clamp(const T& a, const T& lo, const T& hi, Compare comp)

{
}

return min(max(lo, a, comp), hi, comp);
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Subtle defects
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Subtle defects

int main() <1
using pair = pair<int, string>;

pair a = { 1, "OK" };
pair lo = { 1, "FAIL: LO" };
pair hi = { 2, "FAIL: HI" };

a = clamp(a, lo, hi, []l(const auto& a, const auto& b) {
return a.first < b.first;
) ;

cout << a.second << endl:
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Subtle defects

int main() <1
using pair = palr<int, string>;

pair a = { 1, "OK" };
pair lo = { 1, "FAIL: LO" };
pair hi = { 2, "FAIL: HI" };

a = clamp(a, lo, hi, [l(const auto& a, const auto& b) {
return a.first < b.first;

1) ;

cout << a.second << endl:
b
FAIL: LO
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Subtle defects

© 2016 Adobe Systems Incorporated. All Rights Reserved. '
A\

Adobe



Subtle defects

template<typename T>

const T& clamp(const T& a, const T& lo, const T& hi)
1

}

return min(max(a, lo), hi);:

© 2016 Adobe Systems Incorporated. All Rights Reserved.
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Subtle defects

template<typename T>
const T& clamp(const T& a, const T& lo, const T& hi)
1

}

return min(max(a, lo), hi);:

template<typename T, typename Compare>
const T& clamp(const T& a, const T& lo, const T& hi, Compare comp)

{
}

return min(max(a, lo, comp), hi, comp);
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Subtle defects
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Subtle defects

template<class T> const T& min(const T& a, const T& b);
Returns: The smaller value.

Remarks: Returns the first argument when the arguments are equivalent.

template<class T> const T& max(const T& a, const T& b);
Returns: The larger value.

Remarks: Returns the second argument when the arguments are equivalent.
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Subtle defects

template<class T> const T& min(const T& a, const T& b);
Returns: The smaller value.

Remarks: Returns the first argument when the arguments are equivalent.

template<class T> const T& max(const T& a, const T& b);
Returns: The larger value.

Remarks: Returns the second argument when the arguments are equivalent.

template <class T> const T& max(const T& a, const T& b, const T& ¢);
Returns: The larger value.

Remarks: 227
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Rules are Contentious
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Rules are Contentious

‘Names should not be associated with semantics because everybody has their

own hidden assumptions about what semantics a

comprehension problems without kr
write code to reflect what code is actua

OW

ly G

ng why. This
oing, rather t

nan wha

it's hard to have conceptual clashes about what code actua
- Craig Silverstein, Google
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How can nothing be something?
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How can nothing be something?

int Xx:

© 2016 Adobe Systems Incorporated. All Rights Reserved. 27 '
A\

AAAAA



How can nothing be something?

int Xx:
// 1ndeterminate value
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How can nothing be something?

int Xx:
// 1ndeterminate value

int x =1/ 0:
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How can nothing be something?
int Xx:
// 1ndeterminate value

int x =1/ 0:
// undefined behavior
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How can nothing be something?

int Xx:
// 1ndeterminate value

int x =1/ 0:
// undefined behavior

double x = 1.0 / 0.0:
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How can nothing be something?

int Xx:
// 1ndeterminate value

int x =1/ 0:
// undefined behavior

double x = 1.0 / 0.0:
// 1inf
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How can nothing be something?

int Xx:
// 1ndeterminate value

int x =1/ 0:
// undefined behavior

double x = 1.0 / 0.0:
// 1inf

double X 0.0 / 0.0;
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How can nothing be something?

int Xx:
// 1ndeterminate value

int x =1/ 0:
// undefined behavior

double x = 1.0 / 0.0:
// 1inf

double X 0.0 / 0.0;

// NaN
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How can nothing be something?

int Xx:
// 1ndeterminate value

int x =1/ 0:
// undefined behavior

double x = 1.0 / 0.0:
// 1inf

double X 0.0 / 0.0;

// NaN

struct empty { };
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How can nothing be something?

int Xx:
// 1ndeterminate value

int x =1/ 0:
// undefined behavior

double x = 1.0 / 0.0:
// 1inf

double X 0.0 / 0.0;

// NaN

struct empty { };
// sizeof(empty) ==
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How can nothing be something?

© 2016 Adobe Systems Incorporated. All Rights Reserved. '
A\

AAAAA



How can nothing be something?

int al0];
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How can nothing be something?

int a[0@];
// Error

2016 Adobe Systems Incorporated. All Rights Reserved. '~‘
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How can nothing be something?

int al0]:
// Error
// but common extension
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How can nothing be something?

int al0Q];

// Error

// but common extension
using empty = int[0];

© 2016 Adobe Systems Incorporated. All Rights Reserved. "‘
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How can nothing be something?

int al0Q];

// Error

// but common extension
using empty = int[0];
// sizeof(empty) ==
empty al2];
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How can nothing be something?

int al0Q];

// Error

// but common extension
using empty = int[0];
// sizeof(empty) ==
empty al2];

// &al0] == &al1l]
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How can nothing be something?

int al0Q];

// Error

// but common extension
using empty = int[0];
// sizeof(empty) ==
empty al2];

// &al0] == &al1l]

void f() { return void(): }
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How can nothing be something?

int al0Q];

// Error

// but common extension
using empty = int[0];
// sizeof(empty) ==
empty al2];

// &al0] == &al1l]

void f() { return void(): }
// OK
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How can nothing be something?

int al0Q];

// Error

// but common extension
using empty = int[0];
// sizeof(empty) ==
empty al2];

// &al0] == &al1l]

void f() { return void(): }
// OK

void x = f():
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How can nothing be something?

int al0Q];

// Error

// but common extension
using empty = int[0];
// sizeof(empty) ==
empty al2];

// &al0] == &al1l]

void f() { return void(): }
// OK

void x = f():
// Error
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How can nothing be something?

int al0Q];

// Error

// but common extension
using empty = int[0];
// sizeof(empty) ==
empty al2];

// &al0] == &al1l]

void f() { return void(): }
// OK

void x = f();
// Error
// but voidx is a pointer to anything..
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How can nothing be something?
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How can nothing be something?

{1, 2, 3 };

std::vector<int> X
try o
X.1insert(x.begin(), 0);
} catch (...) {
stdiicout << X.size() << std:iiendl;
+

© 2016 Adobe Systems Incorporated. All Rights Reserved. ' ‘
L\
Adobe



How can nothing be something?

std::vector<int> x = { 1, 2, 3 };
try {

X.1insert(x.begin(), 0);
} catch (...) {

stdricout << x.size() << std::endl;
+

// Basic Exception Guarantee:
// Valid but unspecified
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How can nothing be something?

std::vector<int> X
try o
X.1insert(x.begin(), 0);
} catch (...) {
stdricout << x.size() << std::endl;
+

// Basic Exception Guarantee:
// Valid but unspecified

{1, 2, 3 };

std::vector<int> y = std::move(x);
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How can nothing be something?

std::vector<int> X
try o
X.1insert(x.begin(), 0);
} catch (...) {
stdricout << x.size() << std::endl;
s

// Basic Exception Guarantee:
// Valid but unspecified

{1, 2, 3 };

std::vector<int> y = std::move(x);
// Moved from object, x, 1s valid but unspecified
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Good Code
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Good Code

Good code is correct
Consistent: without contradiction
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Good Code

Good code is correct
Consistent: without contradiction

Good code has meaning
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Good Code

Good code is correct
Consistent: without contradiction

Good code has meaning
Correspondence to an entity; specified, defined
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Categories of nothing
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Categories of nothing

Absence of something
0,9, 1p, p), void
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Categories of nothing

Absence of something
0,9, 1p, p), void

Absence of meaning
NaN, undefined, indeterminate
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How can nothing be something?
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How can nothing be something?

int Xx:
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How can nothing be something?

int Xx:
// Partially formed; assign value or destruct
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How can nothing be something?

int Xx:
// Partially formed; assign value or destruct

int x =1/ 0:
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How can nothing be something?

int Xx:
// Partially formed; assign value or destruct

int x =1/ 0;
// undefined behavior; reading from meaningless value
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How can nothing be something?

int Xx:
// Partially formed; assign value or destruct

int x =1/ 0;
// undefined behavior; reading from meaningless value

double x = 1.0 / 0.0:
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How can nothing be something?

int Xx:
// Partially formed; assign value or destruct

int x =1/ 0;
// undefined behavior; reading from meaningless value

double x = 1.0 / 0.0;
// 1intf; 0K, approximation for underf low
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How can nothing be something?

int Xx:
// Partially formed; assign value or destruct

int x =1/ 0;
// undefined behavior; reading from meaningless value

double x = 1.0 / 0.0;
// 1intf; 0K, approximation for underf low

double X 0.0 / 0.0;
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How can nothing be something?

int Xx:
// Partially formed; assign value or destruct

int x =1/ 0;
// undefined behavior; reading from meaningless value

double x = 1.0 / 0.0;
// 1intf; 0K, approximation for underf low

double x = 0.0 / 0.0;
// NaN; OK, though undefined behavior would also be
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How can nothing be something?

int Xx:
// Partially formed; assign value or destruct

int x =1/ 0;
// undefined behavior; reading from meaningless value

double x = 1.0 / 0.0;
// 1intf; 0K, approximation for underf low

double x = 0.0 / 0.0;
// NaN; OK, though undefined behavior would also be
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How can nothing be something?

int Xx:
// Partially formed; assign value or destruct

int x =1/ 0;
// undefined behavior; reading from meaningless value

double x = 1.0 / 0.0;
// 1intf; 0K, approximation for underf low

double x = 0.0 / 0.0;
// NaN; OK, though undefined behavior would also be

struct empty : void { };
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How can nothing be something?

int Xx:
// Partially formed; assign value or destruct

int x =1/ 0;
// undefined behavior; reading from meaningless value

double x = 1.0 / 0.0;
// 1intf; 0K, approximation for underf low

double x = 0.0 / 0.0;
// NaN; OK, though undefined behavior would also be

struct empty : void { };
// sizeof(empty) == 0;
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How can nothing be something?
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How can nothing be something?

int al0];
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How can nothing be something?

int al0Q];
// OK
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How can nothing be something?

int al[0];:

// OK
using empty = int[0];
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How can nothing be something?

int al[0];

// OK

using empty = int[0];
// sizeof(empty) == 0
empty al2];
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How can nothing be something?

int al[0];

// OK

using empty = int[0];
// sizeof(empty) == 0
empty al2];

// & l0] == &all]
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How can nothing be something?

int al[0];

// OK

using empty = int[0];
// sizeof(empty) == 0
empty al2];

// & l0] == &all]

void f() { return void(): }
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How can nothing be something?

int al[0];

// OK

using empty = int[0];
// sizeof(empty) == 0
empty al2];

// & l0] == &all]

void f() { return void(): }
// OK
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How can nothing be something?

int al[0];:

// OK

using empty = int[0];
// sizeof(empty) == 0
empty al2];

// & l0] == &all]

void f() { return void(): }
// OK

void x = f():
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How can nothing be something?

int al[0];

// OK

using empty = int[0];
// sizeof(empty) == 0
empty al2];

// & l0] == &all]

void f() { return void(): }
// OK

void x = f():

// OK
// voidx is OK
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How can nothing be something?
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How can nothing be something?

{1, 2, 3 };

std::vector<int> X
try o
X.1insert(x.begin(), 0);
} catch (...) {
stdiicout << X.size() << std:iiendl;
+
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How can nothing be something?

std::vector<int> x

try {
X.1insert(x.begin(), 0);

} catch (...) {
stdricout << x.size() << std::endl;
s

// Basic Exception Guarantee:
// Partially formed object. Reading is undefined behavior

{1, 2, 3 };
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How can nothing be something?

std::vector<int> X
try o
X.1insert(x.begin(), 0);
} catch (...) {
stdricout << x.size() << std::endl;
s

// Basic Exception Guarantee:
// Partially formed object. Reading is undefined behavior

{1, 2, 3 };

std::vector<int> y = std::move(x);
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How can nothing be something?

std::vector<int> X
try o
X.1insert(x.begin(), 0);
} catch (...) {
stdricout << x.size() << std::endl;
s

// Basic Exception Guarantee:
// Partially formed object. Reading is undefined behavior

{1, 2, 3 };

std::vector<int> y = std::move(x);
// Moved from object, x, 1s partially formed
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The Permutation Paradox
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The Permutation Paradox
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The Permutation Paradox
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The Permutation Paradox

nothing = unsafe
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The Permutation Paradox

nothing = unsafe

something = inefficient
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The Permute
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The Permutation Paradox

"There is a duality between transtormations and the corresponding actions: An action is
definable in terms of a transformation and vice versa:
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The Permutation Paradox

"There is a duality between transtormations and the corresponding actions: An action is
definable in terms of a transformation and vice versa:

void a(T& x) { x = f(x); } // action from transformation

and

T f(T x) {1 a(x); return x; } // transformation from action
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The Permutation Paradox

"There is a duality between transform
definable in terms o

T f(T x) { a(x);

Despite this du

© 2016 Adobe Systems Incorporated. All Rights Reserve

void a(T& x) { x = f(x); } // action from transformation

ality, inde
Dot

bendent impleme

return X;

and

N action and trans

‘ormation need to

Ntations are somet

ations and the corresponding actions: An action is
3 transformation and vice versa:

1 // transformation from action

be provided!

mes more efficient, in which case

— Elements of Programming (section 2.5)
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Good Code
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Good Code

Good code is correct
Consistent: without contradiction

Good code has meaning
Correspondence to an entity; specified, defined
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Good Code

Good code is correct
Consistent: without contradiction

Good code has meaning
Correspondence to an entity; specified, defined

Good code is efficient
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Good Code

Good code is correct
Consistent: without contradiction

Good code has meaning
Correspondence to an entity; specified, defined

Good code is efficient
Maximum effect with minimum resources
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Efficiency
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Efficiency

Choice of data structures and algorithms

Choice of what to optimize for
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Efficiency
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Efficiency

© 2016 Adobe Systems Incorporated. All Rights Reserved. '«‘

AAAAA



Efficiency
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Efficiency

template <class ForwardIterator>
void reverse(ForwardIterator f, ForwardIterator 1) {
auto n = distance(f, 1);

if (n == || n == 1) return;
auto m = next(f, n / 2);
reverse(f, m);

reverse(m, 1);
rotate(f, m, 1);
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Efficiency

template <class ForwardIterator>
void reverse(ForwardIterator f, ForwardIterator 1) {
auto n = distance(f, 1);
if (n == || n == 1) return;
auto m = next(f, n / 2);
reverse(f, m);

reverse(m, 1);
rotate(f, m, 1);

O(n log n)
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Efficiency
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Efficiency
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Simple Word Modael

M ov- = -

Insert Design Layout References Mailings Review View

o . — S R

e |

Paste & B I U -~ abe X; x2 &":’"A' = == .

Hello World!
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Simple Word Modael

-  Current Document
- Selection

- Provides a range; an empty range denotes a location

Current Document
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More Complex Word Model

- Need to be able to set the selection in “constant” time

- This would imply a vector data structure
- Also need constant time insert and erase
- This would imply a list data structure

- Solution: a more complex data structure such as a rope
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Good Code

Good code is correct
Consistent: without contradiction

Good code has meaning
Correspondence to an entity; specified, defined

Good code is efficient
Maximum effect with minimum resources

Good code is reusable
Applicable to multiple problems; general in purpose
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Reusable
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Reusable

Concrete but of general use, i.e. numeric algorithms, utt conversions, ...

Generic when algorithm is useful with different models
Sometimes faster to convert one model to another

Runtime dispatched when types not known at compile time
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Reusable
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Reusable

Minimize client dependencies and intrusive requirements

Separate data structures from algorithms
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Reusable
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Reusable

template <class T, class InputIterator, class OutputlIterator>

OutputIterator copy utf(InputIterator first, InputlIterator last,
OutputIterator result);

const char str[] = u8"Hello World!'";
vector<uintle t> out;

copy_utf<uintl6_t>(begin(str), end(str), back_inserter(out));
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Why Status Quo Will Fail
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Why Status Quo Will Fail

()

Professional programmers had a couple

Ninety percent of the programmers fou
always convinced of the correctness of t

© 2016 Adobe Systems Incorporated. All Rights Reserved.

ve assigned this problem [binary search] in courses at Bell Labs and IBM.

of hours to convert the description into
a programming language of their choice; a high-level pseudo code was fine...

nd bugs in their programs (and | wasn't

ne code in which no bugs were founc

;

— Jon Bentley, Programming Pearls, 1986
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Why Status Quo Will Fail

intx lower bound(int*x first, intx last, int value)

1
while (first != last)

1
intx middle = first + (last - first) / 2:
if (*kmiddle < value) first = middle + 1;
else last = middle;

+

return first:
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Signs of Hope
Flements of Programming

Concepts aren't dead yet in C++

ncreased interest in new languages and formalisms

Renewed Interest in Communication Sequential Processes
Renewed interest in Functional Programming ideas

Rise of Reactive Programming & Functional Reactive Programming
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Work Continues
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Work Continues

Generating Reactive Programs for Graphical User Interfaces from Multi-way Dataflow Constraint
Systems, GPCE 2015, Gabriel Foust, Jaakko Jarvi, Sean Parent

One Way To Select Many, ECOOP 2016, Jaakko Jarvi, Sean Parent

https://github.com/sean-parent/sean-parent.github.io/wiki/Papers-and-Presentations
https://github.com/stlab
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