Better Code: Data Structures
Sean Parent | Principal Scientist

P ——— ™ i 2 o - - -d - -

i
IR
.

S Pt

AP - 7
"r./‘ Pt S P
A et - o8
L A

W AL ey, 5
P » 4.,-'Ql
- o
-3P 3
.

R
-
e

Better Code

Regular Types
Goal: Implement Complete and Efficient Types
Algorithms
Goal: No Raw Loops
Data Structures
Goal: No Incidental Data Structures
Runtime Polymorphism
Goal: No Raw Pointers
Concurrency

Goal: No Raw Synchronization Primitives

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Better Code

Regular Types
Goal: Implement Complete and Efficient Types

G

Algorithms
Goal: No Raw Loops
Data Structures

Goal: No Incidental Data Structures

Runtime Polymorphism
Goal: No Raw Pointers
Concurrency

Goal: No Raw Synchronization Primitives

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Goal: No incidental data structures

What is an incidental data structure?

What is a data structure?

What is a data structure?

Definition: A data structure is a format for organizing and
storing data.

What is a structure?

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

What is a structure?

Definition: A structure on a set consists of additional entities
that, in some manner, relate to the set, endowing the
collection with meaning or significance.

0100

[hash() != hash()]

(0100

(0011

[hayy)]
(0100

(0011

Memory Space

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

(0100

17

(0011

A

Memory Space

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

(0100

17

(0011

A

Memory Space

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

(0100

17

(0011

A

Memory Space

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

17

N

Adobe

Memory Space

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

17

N

Adobe

Memory Space

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

17

N

Adobe

Memory Space

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

(0011

18

(0100

A

Memory Space

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

(0011

18

0100

A

Memory Space

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

(0011 oo

0111

18

A

Whole-Part Relationships and Composite Objects

Elements of Programming, Chapter 12

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential. ' ‘
A

Adobe

Whole-Part Relationships and Composite Objects

Connected

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Part A

Part B

Part C

Elements of Programming, Chapter 12

N

Adobe

Whole-Part Relationships and Composite Objects

Connected

Noncircular

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Part A

Part B

Part C

Elements of Programming, Chapter 12

N

Adobe

Whole-Part Relationships and Composite Objects

Connected

Noncircular

Elements of Programming, Chapter 12

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential. ' ‘
A

Adobe

Whole-Part Relationships and Composite Objects

Connected
Part A Part A’
Noncircular
[[Part B Part B’
Logically Disjoint I S
i’ Part C <_f_

Elements of Programming, Chapter 12

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential. '\‘

Adobe

Whole-Part Relationships and Composite Objects

Connected
Noncircular

Logically Disjoint

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Part A

Part B

Part A’

Part B’

Elements of Programming, Chapter 12

N

Adobe

Whole-Part Relationships and Composite Objects

Connected
Noncircular
Logically Disjoint
Owning

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Part A

Part B

Part C

Elements of Programming, Chapter 12

N

Adobe

Whole-Part Relationships and Composite Objects

Connected
Noncircular
Logically Disjoint
Owning

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Part A

Part B

Part A

Part C

Part B

Part C

Elements of Programming, Chapter 12

N

Adobe

Whole-Part Relationships and Composite Objects

Connected
Noncircular
Logically Disjoint
Owning

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Part A

Part B

Part C

Elements of Programming, Chapter 12

N

Adobe

Whole-Part Relationships and Composite Objects

Connected
Noncircular
Logically Disjoint

Owning

Standard Containers are Composite Objects

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Part A

Part B

Part C

Elements of Programming, Chapter 12

N

Adobe

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

What is a data structure?

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

What is a data structure?

Definition: A structure utilizing value, physical, and
representational relationships to encode semantic
relationships on a collection of objects.

What is a data structure?

Definition: A structure utilizing value, physical, and
representational relationships to encode semantic
relationships on a collection of objects.

The choice of encoding can make a dramatic difference on the
performance of operations.

Data Structure Performance

3GHz processor, from Chandler Carruth talk - Credit to Jeff Dean

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential. pA ' ‘
A

Adobe

Data Structure Performance

Hierarchical Memory Structure

Register Access
L1 Cache
L2 Cache

Memory

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

0.1

0.5

7.0
100.0

ns

ns

ns

ns

3GHz processor, from Chandler Carruth talk - Credit to Jeff Dean

21

N

Adobe

Data Structure Performance

Hierarchical Memory Structure

Register Access 0.1
L1 Cache 0.5
L2 Cache 7.0
Memory 100.0

RAM behaves much like a disk drive

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

ns

ns

ns

ns

3GHz processor, from Chandler Carruth talk - Credit to Jeff Dean

21

N

Adobe

Data Structure Performance

Hierarchical Memory Structure

Register Access 01 ns
L1 Cache 0.5 ns
L2 Cache 70 ns
Memory 100.0 ns

RAM behaves much like a disk drive

log> 1,000,000,000,000 =40

3GHz processor, from Chandler Carruth talk - Credit to Jeff Dean

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential. pA ' ‘
A

Adobe

Data Structure Performance

Locality matters - use arrays or vector
Parallel Arrays
Static Lookup Tables
Closed Hash Maps
Algorithms

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Example: Parallel Array & Algorithms

Stable Partition

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

stable partition(f, m, p)

stable partition(m, 1, p)

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

stable partition(f, m, p)

stable partition(m, 1, p)

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

stable partition(f, m, p)

stable partition(m, 1, p)

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

rotate(stable_partition(f, m, p),
m,
stable_partition(m, 1, p));

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

rotate(stable_partition(f, m, p),
m,
stable_partition(m, 1, p));

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

return rotate(stable_partition(f, m, p),
m,
stable_partition(m, 1, p));

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

<« I —

| \<—r'—

return rotate(stable_partition(f, m, p),
m,
stable_partition(m, 1, p));

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

<« I —

| \4—7'— if (n == 1) return f + p(xf);

return rotate(stable_partition(f, m, p),
m,
stable_partition(m, 1, p));

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

if (n == 1) return f + p(xf);

return rotate(stable_partition(f, m, p),
m,
stable_partition(m, 1, p));

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

<+ f —
template <typename I,
typename P>
auto stable partition(I f, I 1, Pp) —> 1
{
auto n =1 - f;
if (n == 0) return f;
if (n == 1) return f + p(xf);
autom=°F + (n / 2);
return rotate(stable_partition(f, m, p),
m,
stable_partition(m, 1, p));
¥
< | —

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

<+ f —
template <typename I,
typename P>
auto stable partition(I f, I 1, Pp) —> 1
{
auto n =1 - f;
if (n == 0) return f;
if (n == 1) return f + p(xf);
autom=°F + (n / 2);
return rotate(stable_partition(f, m, p),
m,
stable_partition(m, 1, p));
¥
< | —

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

<+ T —
template <typename I,
typename P>
auto stable partition(I f, I 1, Pp) —> 1
{
auto n =1 - f;
if (n == 0) return f;
if (n == 1) return f + p(xf);
autom=°F + (n / 2);
return rotate(stable_partition(f, m, p),
m,
stable_partition(m, 1, p));
¥
< | —

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

<+ f —
template <typename I,
typename P>
auto stable partition(I f, I 1, Pp) —> 1
{
auto n =1 - f;
if (n == 0) return f;
if (n == 1) return f + p(xf);
autom=°F + (n / 2);
return rotate(stable_partition(f, m, p),
m,
stable_partition(m, 1, p));
¥
< | —

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

<+ f —
template <typename I,
typename P>
auto stable partition_position(I f, I 1, P p) — I
{
auto n =1 - f;
if (n == 0) return f;
if (n == 1) return f + p(f);
autom=°Ff + (n / 2);
return rotate(stable_partition_position(f, m, p),
m,
stable_partition_position(m, 1, p));
I3
e | —

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

int all {1, 2, 3, 4, 5,5, 4, 3, 2, 1};
bool bJ[] {o, 1, 0, 1, 0, 0, 1, 0, 1, 0 }

n
’

4

auto p = stable_partition_position(begin(a), end(a), [&](auto i) {
return *x(begin(b) + (i - begin(a)))
F);

for (auto f = begin(a), 1 =p; f !'= 1; ++f) cout << xf << " ;
Cou.t << i VAN II;
for (auto f = p, 1
cout << endl:

end(a); f !'= 1; ++f) cout << *f << " ';

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Stable Partition

int all {1, 2, 3, 4, 5,5, 4, 3, 2, 1};
bool bJ[] {o, 1, 0, 1, 0, 0, 1, 0, 1, 0 }

n
’

4

auto p = stable_partition_position(begin(a), end(a), [&](auto i) {
return *x(begin(b) + (i - begin(a)))
F);

for (auto f = begin(a), 1 =p; f !'= 1; ++f) cout << xf << " ;
Cou.t << i VAN II;
for (auto f = p, 1
cout << endl:

end(a); f !'= 1; ++f) cout << *f << " ';

24427135531

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Example: Algorithms & Minimal Work

Minimize Work

st -

—_ | —_ |
I\)-h(ﬂm@\ll\)@'h

sl -

11

16
10

W|Ooo(—

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Minimize Work

st -

< S -

= e N e I e el e RN [(S EN (S ST

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Minimize Work

st -

OO0

sl -

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Minimize Work

st -

—_ | —_ |
I\)-h(ﬂm@\ll\)@'h

sl -

11

16
10

W|Ooo(—

<+ | —

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Minimize Work

st -

—_ | —_ |
I\)-h(ﬂm@\ll\)@'h

11

16
10

W|Ooo(—

<+ | —

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Minimize Work

st -

nth_element(f, sf, 1);

—_ | —_ |
I\)-h(ﬂm@\ll\)@'h

11

16
10

W|Ooo(—

<+ | —

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Minimize Work

st -

nth_element(f, sf, 1);

<+ | —

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Minimize Work

st -

N0 |W|—=(N

nth_element(f, sf, 1);

14
12
15

16
10
13

11

<+ | —

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Minimize Work

st ‘

N0 |W|—=(N

nth_element(f, sf, 1);

14
12
15

16
10
13

11

<+ | —

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Minimize Work

st

N0 |W|—=(N

nth_element(f, sf, 1);

14
12
15

16
10
13

11

< |

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Minimize Work

st -

N0 |W|—=(N

nth_element(f, sf, 1);

14
12
15

sl -

16
10
13

11

<+ | —

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Minimize Work

st -

N0 |W|—=(N

nth_element(f, sf, 1);
12 ++ST;

12)
15 5

16
10
13

11

<+ | —

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Minimize Work

N0 |W|—=(N

sf - nth_element(f, sf, 1);
2 ++sT;

12)
15 5

16
10
13

11

<+ | —

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Minimize Work

N0 |W|—=(N

ST - nth_element(f, sf, 1);
12 ++s T

12 <1 -

15 partial_sort(sf, sl, 1);

16
10
13

11

<+ | —

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Minimize Work

f —
= st - nth_element(f, sf, 1);
3 ++ST;
9 sl-
partial_sort(sf, sl, 1);
<+ | —

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Minimize Work

f_
? st - nth_element(f, sf, 1);
3 ++ST;
9 sl-
partial_sort(sf, sl, 1);
<+ | —

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Minimize Work

if (sf == sl) return;

nth_element(f, sf, 1);
++ST;

partial_sort(sf, sl, 1);

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Minimize Work

if (sf == sl) return;

if (sf '= f) {
nth_element(f, sf, 1);
++5T;

}
partial_sort(sf, sl, 1);

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Minimize Work

template <typename I> // I models RandomAccessIterator
void sort_subrange(I f, I 1, I sf, I sl)
{
if (sf == sl) return;
if (sf '= f) {
nth_element(f, sf, 1);
++ST;

}
partial_sort(sf, sl, 1);

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Minimize Work

sort_subrange(f, 1, sf, sl);

st -

—_ | —_ |
I\)-h(ﬂm@\ll\)@'h

sl -

11

16
10

W|Ooo(—

<+ | —

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Minimize Work

sort_subrange(f, 1, sf, sl);

st -

OO0

sl -

<+ | —

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Minimize Work

F= sort_subrange(f, 1, sf, sl);
5 st -
/
8
S sl -
nl -
<+ | —

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Minimize Work

F= sort_subrange(f, 1, sf, sl);
partial_sort(sl, nl, 1);
5 st -
/
8
9 sl -
nl-
<+ | —

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Minimize Work

F= sort_subrange(f, 1, sf, sl);
partial_sort(sl, nl, 1);

5 st -
7
8
9 _
10 o
11
12 1 -

<+ | —

© 2013 Adobe Systems Incorporated. All Rights Reserved.

What is an incidental data structure?

What is an incidental data structure?

Definition: An incidental data structure is a data structure that
occurs within a system when there is no object representing
the structure as a whole.

What is an incidental data structure?

Definition: An incidental data structure is a data structure that
occurs within a system when there is no object representing
the structure as a whole.

Structures formed in the absence of a whole/part relationship

Why no incidental data structures?

They cause ambiguities and break our ability to reason about code locally

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Incidental Data Structures

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Incidental Data Structures

Delegates

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Incidental Data Structures

Delegates

Message handlers

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Incidental Data Structures

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Incidental Data Structures

Self-referential interface

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Incidental Data Structures

Self-referential interface

class UIElement { }:

class UIElementCollection {
public:
void Add(shared ptr<UIElement>);
s

class Panel : public UIElement {
public:
shared ptr<UIElementCollection> Children() const;

b

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Incidental Data Structures

Self-referential interface

class UIElement { }:

class UIElementCollection {
public:
void Add(shared ptr<UIElement>);
s

class Panel : public UIElement {
public:
shared ptr<UIElementCollection> Children() const;
¥

panel->Children()—->Add(element); Panel

R

Element

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Incidental Data Structures

Self-referential interface

class UIElement { }:

class UIElementCollection {
public:
void Add(shared ptr<UIElement>);
s

class Panel : public UIElement {
public:
shared ptr<UIElementCollection> Children() const;
¥

panel->Children()—->Add(element); Panel

panel->Children()->Add(element); | |

Element

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Incidental Data Structures

Self-referential interface

class UIElement { }:

class UIElementCollection {
public:
void Add(shared ptr<UIElement>);
s

class Panel : public UIElement {
public:
shared ptr<UIElementCollection> Children() const;

}i

panel->Child ren()—->Add(element); Panel Panel2
panel->Children()->Add(element); T‘— —
panel2—>Children()->Add(element);)

Element |« /

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Incidental Data Structures

Self-referential interface

class UIElement { }:

class UIElementCollection {
public:
void Add(shared ptr<UIElement>);
s

class Panel : public UIElement {
public:
shared ptr<UIElementCollection> Children() const;

¥

panel->Children()->Add(element); Panel Panel2
panel->Children()->Add(element);
panel2—>Children()—>Add(element); |
panel->Children()->Add(panel); Eloment | y

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Incidental Data Structures

Self-referential interface

class UIElement { }:

class UIElementCollection {
public:
void Add(shared ptr<UIElement>);
s

class Panel : public UIElement {
public:

shared ptr<UIElementCollection> Children() const;

b

panel->Children()->Add(element);
panel->Children()->Add(element);
panel2->Children()->Add(element);
panel->Children()->Add(panel);

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Panel

)

Element

Hierarchies

forest

Ol010

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Hierarchies

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Hierarchies

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Hierarchies

© 2013 Adobe Systems Incorporated. All Rights Reserved.

list

Hierarchies

forest

Ol010

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Hierarchies

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Hierarchies

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Hierarchies

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Hierarchies

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Hierarchies

© 2013 Adobe Systems Incorporated. All Rights Reserved.

forest
begin() end()
A E
\——/
N
C D

Hierarchies

leading

trailing

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Hierarchies

© 2013 Adobe Systems Incorporated. All Rights Reserved.

forest
begin() end()
A E
\——/
N
C D

Hierarchies

forest<string> f;

f.insert(end(f), "A");
f.insert(end(f), "E");

auto a = trailing of(begin(f));
f.insert(a, "B"):
f.insert(a, "C");
f.insert(a, "D"):

© 2013 Adobe Systems Incorporated. All Rights Reserved.

forest

Conclusions

Understand the structures created by relationships
Encapsulate structure invariants in composite types
Learn to use the tools at your disposal

And how to create new ones

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

© 2015 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

No incidental data structures

No incidental data structures

Composite Types

No incidental data structures

Composite Types

Better Code

