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Better Code

Regular Types
Goal: Implement Complete and Efficient Types
Algorithms
Goal: No Raw Loops
Data Structures
Goal: No Incidental Data Structures
Runtime Polymorphism
Goal: No Raw Pointers
Concurrency

Goal: No Raw Synchronization Primitives
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Goal: No incidental data structures




What is an incidental data structure?




What is a data structure?




What is a data structure?

Definition: A data structure is a format for organizing and
storing data.




What is a structure?
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What is a structure?

Definition: A structure on a set consists of additional entities
that, in some manner, relate to the set, endowing the
collection with meaning or significance.
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Whole-Part Relationships and Composite Objects

Elements of Programming, Chapter 12
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Whole-Part Relationships and Composite Objects

Connected
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Connected

Noncircular
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Whole-Part Relationships and Composite Objects

Connected
Part A Part A’
Noncircular
[[ Part B Part B’
Logically Disjoint I S
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Elements of Programming, Chapter 12
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Whole-Part Relationships and Composite Objects

Connected
Noncircular
Logically Disjoint

Owning

Standard Containers are Composite Objects
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What is a data structure?
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What is a data structure?

Definition: A structure utilizing value, physical, and
representational relationships to encode semantic
relationships on a collection of objects.




What is a data structure?

Definition: A structure utilizing value, physical, and
representational relationships to encode semantic
relationships on a collection of objects.

The choice of encoding can make a dramatic difference on the
performance of operations.




Data Structure Performance

3GHz processor, from Chandler Carruth talk - Credit to Jeff Dean
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Data Structure Performance

Hierarchical Memory Structure

Register Access
L1 Cache
L2 Cache

Memory
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Data Structure Performance

Hierarchical Memory Structure

Register Access 0.1
L1 Cache 0.5
L2 Cache 7.0
Memory 100.0

RAM behaves much like a disk drive
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Data Structure Performance

Hierarchical Memory Structure

Register Access 01 ns
L1 Cache 0.5 ns
L2 Cache 70 ns
Memory 100.0 ns

RAM behaves much like a disk drive

log> 1,000,000,000,000 =40

3GHz processor, from Chandler Carruth talk - Credit to Jeff Dean
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Data Structure Performance

Locality matters - use arrays or vector
Parallel Arrays
Static Lookup Tables
Closed Hash Maps
Algorithms
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Example: Parallel Array & Algorithms




Stable Partition
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Stable Partition
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Stable Partition
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Stable Partition

stable partition(f, m, p)

stable partition(m, 1, p)

© 2013 Adobe Systems Incorporated. All Rights Reserved.




Stable Partition

stable partition(f, m, p)

stable partition(m, 1, p)

© 2013 Adobe Systems Incorporated. All Rights Reserved.




Stable Partition

stable partition(f, m, p)

stable partition(m, 1, p)
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Stable Partition

rotate(stable_partition(f, m, p),
m,
stable_partition(m, 1, p));
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Stable Partition

rotate(stable_partition(f, m, p),
m,
stable_partition(m, 1, p));
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Stable Partition

return rotate(stable_partition(f, m, p),
m,
stable_partition(m, 1, p));
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Stable Partition

<« I —

| \<—r'—

return rotate(stable_partition(f, m, p),
m,
stable_partition(m, 1, p));
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Stable Partition

<« I —

| \4—7'— if (n == 1) return f + p(xf);

return rotate(stable_partition(f, m, p),
m,
stable_partition(m, 1, p));
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Stable Partition

if (n == 1) return f + p(xf);

return rotate(stable_partition(f, m, p),
m,
stable_partition(m, 1, p));
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Stable Partition

<+ f —
template <typename I,
typename P>
auto stable partition(I f, I 1, Pp) —> 1
{
auto n =1 - f;
if (n == 0) return f;
if (n == 1) return f + p(xf);
autom=°F + (n / 2);
return rotate(stable_partition(f, m, p),
m,
stable_partition(m, 1, p));
¥
< | —
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Stable Partition

<+ f —
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Stable Partition

<+ f —
template <typename I,
typename P>
auto stable partition_position(I f, I 1, P p) — I
{
auto n =1 - f;
if (n == 0) return f;
if (n == 1) return f + p(f);
autom=°Ff + (n / 2);
return rotate(stable_partition_position(f, m, p),
m,
stable_partition_position(m, 1, p));
I3
e | —
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Stable Partition

int all {1, 2, 3, 4, 5,5, 4, 3, 2, 1};
bool bJ[] {o, 1, 0, 1, 0, 0, 1, 0, 1, 0 }

n
’

4

auto p = stable_partition_position(begin(a), end(a), [&](auto i) {
return *x(begin(b) + (i - begin(a)))
F);

for (auto f = begin(a), 1 =p; f !'= 1; ++f) cout << xf << " ;
Cou.t << i VAN II;
for (auto f = p, 1
cout << endl:

end(a); f !'= 1; ++f) cout << *f << " ';
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Stable Partition

int all {1, 2, 3, 4, 5,5, 4, 3, 2, 1};
bool bJ[] {o, 1, 0, 1, 0, 0, 1, 0, 1, 0 }

n
’

4

auto p = stable_partition_position(begin(a), end(a), [&](auto i) {
return *x(begin(b) + (i - begin(a)))
F);

for (auto f = begin(a), 1 =p; f !'= 1; ++f) cout << xf << " ;
Cou.t << i VAN II;
for (auto f = p, 1
cout << endl:

end(a); f !'= 1; ++f) cout << *f << " ';
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Example: Algorithms & Minimal Work
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Minimize Work

st -

nth_element(f, sf, 1);
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Minimize Work

st -

nth_element(f, sf, 1);

<+ | —
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Minimize Work

st -
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nth_element(f, sf, 1);
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Minimize Work
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Minimize Work
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Minimize Work

st -

N0 |W|—=(N

nth_element(f, sf, 1);

14
12
15

sl -

16
10
13

11

<+ | —

© 2013 Adobe Systems Incorporated. All Rights Reserved.




Minimize Work

st -

N0 |W|—=(N

nth_element(f, sf, 1);
12 ++ST;
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Minimize Work

N0 |W|—=(N

sf - nth_element(f, sf, 1);
2 ++sT;
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Minimize Work

N0 |W|—=(N

ST - nth_element(f, sf, 1);
12 ++s T

12 <1 -

15 partial_sort(sf, sl, 1);
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Minimize Work

f —
= st - nth_element(f, sf, 1);
3 ++ST;
9 sl-
partial_sort(sf, sl, 1);
<+ | —
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Minimize Work

f_
? st - nth_element(f, sf, 1);
3 ++ST;
9 sl-
partial_sort(sf, sl, 1);
<+ | —
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Minimize Work

if (sf == sl) return;

nth_element(f, sf, 1);
++ST;

partial_sort(sf, sl, 1);
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Minimize Work

if (sf == sl) return;

if (sf '= f) {
nth_element(f, sf, 1);
++5T;

}
partial_sort(sf, sl, 1);
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Minimize Work

template <typename I> // I models RandomAccessIterator
void sort_subrange(I f, I 1, I sf, I sl)
{
if (sf == sl) return;
if (sf '= f) {
nth_element(f, sf, 1);
++ST;

}
partial_sort(sf, sl, 1);
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Minimize Work

sort_subrange(f, 1, sf, sl);
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Minimize Work

sort_subrange(f, 1, sf, sl);
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Minimize Work

F= sort_subrange(f, 1, sf, sl);
5 st -
/
8
S sl -
nl -
<+ | —
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Minimize Work

F= sort_subrange(f, 1, sf, sl);
partial_sort(sl, nl, 1);
5 st -
/
8
9 sl -
nl-
<+ | —
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Minimize Work

F= sort_subrange(f, 1, sf, sl);
partial_sort(sl, nl, 1);

5 st -
7
8
9 _
10 o
11
12 1 -

<+ | —
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What is an incidental data structure?




What is an incidental data structure?

Definition: An incidental data structure is a data structure that
occurs within a system when there is no object representing
the structure as a whole.




What is an incidental data structure?

Definition: An incidental data structure is a data structure that
occurs within a system when there is no object representing
the structure as a whole.

Structures formed in the absence of a whole/part relationship




Why no incidental data structures?

They cause ambiguities and break our ability to reason about code locally
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Incidental Data Structures
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Incidental Data Structures

Delegates
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Incidental Data Structures

Delegates

Message handlers
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Incidental Data Structures
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Incidental Data Structures

Self-referential interface
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Incidental Data Structures

Self-referential interface

class UIElement { }:

class UIElementCollection {
public:
void Add(shared ptr<UIElement>);
s

class Panel : public UIElement {
public:
shared ptr<UIElementCollection> Children() const;

b
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Incidental Data Structures

Self-referential interface

class UIElement { }:

class UIElementCollection {
public:
void Add(shared ptr<UIElement>);
s

class Panel : public UIElement {
public:
shared ptr<UIElementCollection> Children() const;
¥

panel->Children()—->Add(element); Panel

R

Element
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Incidental Data Structures

Self-referential interface

class UIElement { }:

class UIElementCollection {
public:
void Add(shared ptr<UIElement>);
s

class Panel : public UIElement {
public:
shared ptr<UIElementCollection> Children() const;
¥

panel->Children()—->Add(element); Panel

panel->Children()->Add(element); | |

Element
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Incidental Data Structures

Self-referential interface

class UIElement { }:

class UIElementCollection {
public:
void Add(shared ptr<UIElement>);
s

class Panel : public UIElement {
public:
shared ptr<UIElementCollection> Children() const;

}i

panel->Child ren()—->Add(element); Panel Panel2
panel->Children()->Add(element); T‘— —
panel2—>Children()->Add(element); )

Element |« /
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Incidental Data Structures

Self-referential interface

class UIElement { }:

class UIElementCollection {
public:
void Add(shared ptr<UIElement>);
s

class Panel : public UIElement {
public:
shared ptr<UIElementCollection> Children() const;

¥

panel->Children()->Add(element); Panel Panel2
panel->Children()->Add(element);
panel2—>Children()—>Add(element); |
panel->Children()->Add(panel); Eloment | y
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Incidental Data Structures

Self-referential interface

class UIElement { }:

class UIElementCollection {
public:
void Add(shared ptr<UIElement>);
s

class Panel : public UIElement {
public:

shared ptr<UIElementCollection> Children() const;

b

panel->Children()->Add(element);
panel->Children()->Add(element);
panel2->Children()->Add(element);
panel->Children()->Add(panel);
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Hierarchies
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Hierarchies
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Hierarchies
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Hierarchies

leading

trailing
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Hierarchies
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Hierarchies

forest<string> f;

f.insert(end(f), "A");
f.insert(end(f), "E");

auto a = trailing of(begin(f));
f.insert(a, "B"):
f.insert(a, "C");
f.insert(a, "D"):
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Conclusions

Understand the structures created by relationships
Encapsulate structure invariants in composite types
Learn to use the tools at your disposal

And how to create new ones
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Composite Types
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