
© 2014 Adobe Systems Incorporated

Goal: Implement Complete & Efficient Types
Sean Parent | Principal Scientist

1

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Background

2

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Background

2

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Background

! Chapter 1: Regular Types
! Goal: Implement Complete & Efficient Types
!

! Chapter 2: Algorithms
! Goal: No Raw Loops

! Chapter 4: Runtime Polymorphism
! Goal: Shift Polymorphism to Point of Use

! Chapter 5: Concurrency
! Goal: No Raw Synchronization Primitives
!

! See C++ Seasoning, http://channel9.msdn.com/Events/GoingNative/2013/Cpp-Seasoning

3

http://channel9.msdn.com/Events/GoingNative/2013/Cpp-Seasoning

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

What is a Type?

! An object is a representation of an entity as a value in memory
! A type is a pattern for storing and modifying objects1

4

1Elements of Programming, Section 1.3

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

What is a Type?

! An object is a representation of an entity as a value in memory
! A type is a pattern for storing and modifying objects1

4

1Elements of Programming, Section 1.3

type is the interpretation of the bits

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

What is a Type?

! An object is a representation of an entity as a value in memory
! A type is a pattern for storing and modifying objects1

4

1Elements of Programming, Section 1.3

type is the interpretation of the bits

structure and basis operations

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Objects are Physical Entities

! Physicality allows us to apply Philosophy, Logic, Mathematics, and Physics to Computer Science

5

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Objects are Physical Entities

! Transistors are solid-state switches

6

Base

Collector

Emitter

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Objects are Physical Entities

! Just as a relay is an electrically controlled switch

7

Base

Collector Emitter

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Objects are Physical Entities

! Silicon + Boron = P
! Silicon + Phosphorus = N

8

N P NCollector Emitter

Base

Depletion Layers

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Objects are Physical Entities

! An AND Gate

9

A

B

A & B

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Objects are Physical Entities

! A NAND gate

10

NAND
A
B !(A & B)

A

B

!(A & B)

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Objects are Physical Entities

! Sequential Logic RS Latch

11

R

S

Q R S Q
0
1
1

1
0
1

1
0
Q'

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Objects are Physical Entities

! Memory Register

12

D3 D2 D1 D0

Q3 Q2 Q1 Q0

WE

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Objects are Physical Entities

! With some additional control logic a collection of registers form a memory space
! Switches -> Gates -> Sequential Circuits -> Memory -> Processor
!

! Switches can be built in any number of ways (relay, vacuum tube, levers, gears, marbles, dominos…)

13

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Regular Type

14

“There is a set of procedures whose inclusion in
the computational basis of a type lets us place
objects in data structures and use algorithms to
copy objects from one data structure to another.
We call types having such a basis regular, since
their use guarantees regularity of behavior and,
therefore, interoperability.”
 Elements of Programming Section 1.5

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Equality

! Two objects are equal iff their values correspond to the same entity
! From this definition we can derive the following properties:
!
 

15

(8a)a = a. (Reflexivity)

(8a, b)a = b) b = a. (Symmetry)

(8a, b, c)a = b ^ b = c) a = c. (Transitivity)

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Equality

! If the representation of a value as an object is not unique, then the complexity of implementing equality can
be arbitrarily complex

! If the representation is unique, the complexity is O(areaof(A)) worse case
!

! The expected complexity of equality is O(areaof(A)), when the complexity is significantly greater implement
equality as representation equality
 

16

Representational Equality => Value Equality

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Copy and Assignment of Objects

! A copy of an object is a new object equal to the operand
! Assigning to an object makes the object equal to the operand without modifying the operand

17

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Copy and Assignment

! Properties of copy and assignment:
!
!

! Copy is connected to equality

18

b ! a) a = b (copies are equal)

a = b = c ^ d 6= a, d ! a) a 6= b ^ b = c (copies are disjoint)

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Copy and Equality

! Two objects of the same type with the same representation are equal
! It follows that any object is copyable by copying the representation
!
 

19

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Copy and Equality

! Two objects of the same type with the same representation are equal
! It follows that any object is copyable by copying the representation
!
 

19

All types are copyable

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Copy and Equality

! Two objects of the same type with the same representation are equal
! It follows that any object is copyable by copying the representation
!
 

19

All types are copyable *

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Completeness & Efficiency

20

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Completeness & Efficiency

! A type is complete if the set of provided basis operations allow us to construct and operate on any valid,
representable value

! A type is efficient if the set of basis operations allow for any valid operation to be performed in the most
efficient way possible for the chosen representation

20

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Completeness & Efficiency

! A type is complete if the set of provided basis operations allow us to construct and operate on any valid,
representable value

! A type is efficient if the set of basis operations allow for any valid operation to be performed in the most
efficient way possible for the chosen representation

! By simply making all data members public, you provide, by definition, an efficient basis for the type

20

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Completeness & Efficiency

! A type is complete if the set of provided basis operations allow us to construct and operate on any valid,
representable value

! A type is efficient if the set of basis operations allow for any valid operation to be performed in the most
efficient way possible for the chosen representation

! By simply making all data members public, you provide, by definition, an efficient basis for the type
! However, you may fail to protect the invariants of the type, making the approach unsafe

20

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Safety and Validity

21

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Safety and Validity

! A safe operation is one that when, the preconditions are satisfied, leaves an object in a valid state, containing
a representable value

! An unsafe operation may leave an object in an invalid state, requiring additional operations to restore the
object invariants

21

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Safety and Validity

! A safe operation is one that when, the preconditions are satisfied, leaves an object in a valid state, containing
a representable value

! An unsafe operation may leave an object in an invalid state, requiring additional operations to restore the
object invariants

! Sometimes unsafe operation are required to provide an efficient basis

21

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Copy and Equality

! * If the extent of a type is not know either statically or encoded as part of the type, then equality and copy
cannot be implemented as a function of only the type

! Such a type is constructionally incomplete
!
 

22

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Copy and Equality

! * If the extent of a type is not know either statically or encoded as part of the type, then equality and copy
cannot be implemented as a function of only the type

! Such a type is constructionally incomplete
!
 

22

class incomplete_int_array {
 unique_ptr<int[]> data_;
public:
 explicit incomplete_int_array(size_t size) : data_(new int[size]()) { }
};

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Copy and Equality

! If any value of an object can be distinguished through the public interface then equality can be implemented
as a non-member, non-friend function

! Such a type is equationally complete
!
 

23

equationally complete => constructionally complete

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Copy and Equality

! Copy and equality are composed properties

24

Two objects are equal iff only if their essential parts are equal
An object is copyable iff the essential parts are copyable

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Copy and Equality

! An essential part of an object is a part that contributes to its value and is not simply part of the representation

25

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Equality of Functions

26

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Equality of Functions

! Two functions are equal if given the same argument they return the same value

26

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Equality of Functions

! Two functions are equal if given the same argument they return the same value
! In C, we fall back to a representational equality through identity

26

 assert(log2f != log10f);

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Equality of Functions

! Two functions are equal if given the same argument they return the same value
! In C, we fall back to a representational equality through identity

! Unfortunately in C++ function objects (including lambdas) do not define equality

26

 assert(log2f != log10f);

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Equality of Functions

! Two functions are equal if given the same argument they return the same value
! In C, we fall back to a representational equality through identity

! Unfortunately in C++ function objects (including lambdas) do not define equality
! Functions objects are copyable and copies are equal, however they are equationally incomplete

26

 assert(log2f != log10f);

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Copy and Equality

! Expected complexity of copy is O(areaof(T)) worst case

27

class int_array {
 size_t size_;
 unique_ptr<int[]> data_;
public:
 explicit int_array(size_t size) : size_(size), data_(new int[size]()) { }
 int_array(const int_array& x) : size_(x.size_), data_(new int[x.size_])
 { copy(x.data_.get(), x.data_.get() + x.size_, data_.get()); }
!
 int_array& operator=(const int_array& x); // **
!
 const int* begin() const { return data_.get(); }
 const int* end() const { return data_.get() + size_; }
 size_t size() const { return size_; }
};
!
bool operator==(const int_array& x, const int_array& y)
{ return (x.size() == y.size()) && equal(begin(x), end(x), begin(y)); }

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Relationships

28

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Relationships

! As soon as we have two objects we have implicit relationships

28

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Relationships

! As soon as we have two objects we have implicit relationships
! A memory space is a container object

28

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Relationships

! As soon as we have two objects we have implicit relationships
! A memory space is a container object

! When an object is copied, any relationship that object was involved in is either severed or maintained

28

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Reified Relationships

! A reified relationship is a relationship represented by an object
! As an object, a reified relationship is copyable and equality comparable
! When a reified relationship is copied, the relationship is either maintained, severed, or invalidated
!

! We may choose not to implement copy for relationships
!
!

 

29

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Managing Relationships

! Chapter 2: Algorithms
! Goal: No Raw Loops
! Managing positional relationships

! Chapter 4: Runtime Polymorphism
! Goal: Shift Polymorphism to Point of Use
! Managing owned relationship by transforming to whole-part relationship

! Chapter 5: Concurrency
! Goal: No Raw Synchronization Primitives
! Managing relationships between objects and the thread of execution
!
 

30

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Whole-Part Relationship

! A part which is referred to indirectly is a remote part
! An object with remote parts can be moved

! Moving an object only requires storage for the local parts
! Any reified relationship can be maintained and moved

31

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Whole-Part Relationship

! A part which is referred to indirectly is a remote part
! An object with remote parts can be moved

! Moving an object only requires storage for the local parts
! Any reified relationship can be maintained and moved

31

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Move

! Move an object by moving all the local essential parts and moving the relationship to any remote essential
part

32

a = b, a * c) c = b (move is value preserving)

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Move

! Complexity of move is O(sizeof(T))

33

 int_array(int_array&& x) noexcept = default;
 int_array& operator=(int_array&& x) noexcept = default;

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Move

34

class int_array {
 size_t size_;
 unique_ptr<int[]> data_;
public:
 explicit int_array(size_t size) : size_(size), data_(new int[size]()) { }
 int_array(const int_array& x) : size_(x.size_), data_(new int[x.size_])
 { copy(x.data_.get(), x.data_.get() + x.size_, data_.get()); }
!
 int_array(int_array&& x) noexcept = default;
 int_array& operator=(int_array&& x) noexcept = default;
!
 int_array& operator=(const int_array& x); // **
!
 const int* begin() const { return data_.get(); }
 const int* end() const { return data_.get() + size_; }
 size_t size() const { return size_; }
};

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Move

35

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Move

! A moved from object is partially formed
! assigned to
! destructible

35

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Move

! A moved from object is partially formed
! assigned to
! destructible

! A moved from object does not represent a value

35

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Move

! A moved from object is partially formed
! assigned to
! destructible

! A moved from object does not represent a value
! Move is an unsafe operation

35

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

**Assignment

! Copy and Move provide transactional assignment

36

 int_array& operator=(const int_array& x)
 { int_array tmp = x; *this = move(tmp); return *this; }

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

***I Lied

37

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

***I Lied

! Any reified relationship can be maintained and moved

37

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

***I Lied

! Any reified relationship can be maintained and moved
! Unless the relations is a part-whole relationship

37

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

***I Lied

! Any reified relationship can be maintained and moved
! Unless the relations is a part-whole relationship

! Don’t invert the whole-part relationship

37

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

***I Lied

! Any reified relationship can be maintained and moved
! Unless the relations is a part-whole relationship

! Don’t invert the whole-part relationship
! Or understand that you must stay within the same whole

37

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Move Efficiency

! C++ Move is not efficient

38

 int_array(int_array& x, unsafe) : size_(x.size_), data_(x.data_.get()) { }

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Move Efficiency

! C++ Move is not efficient

39

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Move Efficiency

! C++ Move is not efficient

39

template <typename T>
void move_unsafe(T& x, void* raw) { new (raw) T(x, unsafe()); }
!
template <typename T>
void move_unsafe(void* raw, T& x) { new (&x) T(*static_cast<T*>(raw), unsafe()); }
!
void swap(int_array& x, int_array& y)
{
 aligned_storage<sizeof(int_array)>::type tmp;
!
 move_unsafe(x, &tmp);
 move_unsafe(y, &x);
 move_unsafe(&tmp, y);
}

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Other operations on regular types

! Default Construction
! Representations Ordering
! Serialization
! Hash
! Area

40

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Chapter Conclusions

! Understanding the physical nature of objects provides a framework for thinking about objects and types
!

! Careful consideration of providing efficient basis operations is important to reuse
! Sometimes the most efficient basis operations are unsafe

41

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

