EEELTIo®
2 9006C _ec:e
'QGSS eeeoe

£ Al .,
% N S
R T L A=
2 e (b
A il
[h) 70 / N,
o Ve . e
. ' o o y
.“ ’ -1"' ot 4 ¥

© 2014 Adobe Systems Incorporated

» -
M.w. - -.\(. \"l\‘

$-«.

4»,..,3,/»1 -‘.': y oy 3

» -
M.w. - -.\(. \"l\‘

$-«.

4»,..,3,/»1 -‘.': y oy 3

Chapter 1: Regular Types
Goal: Implement Complete & Efficient Types

Chapter 2: Algorithms

Goal: No Raw Loops
Chapter 4: Runtime Polymorphism

Goal: Shift Polymorphism to Point of Use
Chapter 5: Concurrency

Goal: No Raw Synchronization Primitives

See C++ Seasoning, http://channel9.msdn.com/Events/GoingNative/2013/Cpp-Seasoning

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

http://channel9.msdn.com/Events/GoingNative/2013/Cpp-Seasoning

What is a Type?

An object is a representation of an entity as a value in memory

A type is a pattern for storing and modifying objects!

1Elements of Programming, Section 1.3

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

What is a Type?

An object is a representation of an entity as a value in memory

A type is a pattern for storing and modifying objects!

type is the interpretation of the bits

1Elements of Programming, Section 1.3

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

What is a Type?

An object is a representation of an entity as a value in memory

A type is a pattern for storing and modifying objects!

type is the interpretation of the bits

structure and basis operations

1Elements of Programming, Section 1.3

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Objects are Physical Entities

Physicality allows us to apply Philosophy, Logic, Mathematics, and Physics to Computer Science

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Objects are Physical Entities

Transistors are solid-state switches

Collector

Base

Emitter

Objects are Physical Entities

Just as a relay is an electrically controlled switch

Collector Emitter

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Objects are Physical Entities

Silicon + Boron =P

Silicon + Phosphorus =N

Depletion Layers

Collector N N Emitter

Base

Objects are Physical Entities

An AND Gate

A &B

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Objects are Physical Entities

A NAND gate

A] wol-inap (A & B)

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Objects are Physical Entities

Sequential Logic RS Latch

R_

Q

R[S |Q
0O | 1 1
1 0O
1 1 [Q

Objects are Physical Entities

Memory Register

el e e

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Objects are Physical Entities

With some additional control logic a collection of registers form a memory space
Switches -> Gates -> Sequential Circuits -> Memory -> Processor

Switches can be built in any number of ways (relay, vacuum tube, levers, gears, marbles, dominos...)

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Regular Type

“There is a set of procedures whose inclusion in
the computational basis of a type lets us place
objects in data structures and use algorithms to
copy objects from one data structure to another.
We call types having such a basis regular, since
their use guarantees regularity of behavior and,
therefore, interoperability.’
Elements of Programming Section 1.5

Two objects are equal iff their values correspond to the same entity

From this definition we can derive the following properties:

(Va)a = a. (Reflexivity)
(Va,b)a =b=b=a. (Symmetry)
(Va,b,c)a=bAb=c=a=c. (Transitivity)

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

If the representation of a value as an object is not unique, then the complexity of implementing equality can
be arbitrarily complex

If the representation is unique, the complexity is O(areaof(A)) worse case

The expected complexity of equality is O(areaof(A)), when the complexity is significantly greater implement
equality as representation equality

Representational Equality => Value Equality

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Copy and Assignment of Objects

A copy of an object is a new object equal to the operand

Assigning to an object makes the object equal to the operand without modifying the operand

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Copy and Assignment

Properties of copy and assignment:
b—a=a=>b (copies are equal)

a=b=cANd#a,d—>a=a#*#bANb=c (copies are disjoint)

Copy is connected to equality

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Copy and Equality

Two objects of the same type with the same representation are equal

It follows that any object is copyable by copying the representation

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Copy and Equality

Two objects of the same type with the same representation are equal

It follows that any object is copyable by copying the representation

All types are copyable

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Copy and Equality

Two objects of the same type with the same representation are equal

It follows that any object is copyable by copying the representation

All types are copyable *

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Completeness & Efficiency

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Completeness & Efficiency

A type is complete if the set of provided basis operations allow us to construct and operate on any valid,
representable value

A type is efficient if the set of basis operations allow for any valid operation to be performed in the most
efficient way possible for the chosen representation

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Completeness & Efficiency

A type is complete if the set of provided basis operations allow us to construct and operate on any valid,
representable value

A type is efficient if the set of basis operations allow for any valid operation to be performed in the most
efficient way possible for the chosen representation

By simply making all data members public, you provide, by definition, an efficient basis for the type

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Completeness & Efficiency

A type is complete if the set of provided basis operations allow us to construct and operate on any valid,
representable value

A type is efficient if the set of basis operations allow for any valid operation to be performed in the most
efficient way possible for the chosen representation

By simply making all data members public, you provide, by definition, an efficient basis for the type
However, you may fail to protect the invariants of the type, making the approach unsafe

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Safety and Validity

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Safety and Validity

A safe operation is one that when, the preconditions are satisfied, leaves an object in a valid state, containing
a representable value

An unsafe operation may leave an object in an invalid state, requiring additional operations to restore the
object invariants

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Safety and Validity

A safe operation is one that when, the preconditions are satisfied, leaves an object in a valid state, containing
a representable value

An unsafe operation may leave an object in an invalid state, requiring additional operations to restore the
object invariants

Sometimes unsafe operation are required to provide an efficient basis

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Copy and Equality

* If the extent of a type is not know either statically or encoded as part of the type, then equality and copy
cannot be implemented as a function of only the type

Such a type is constructionally incomplete

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Copy and Equality

* If the extent of a type is not know either statically or encoded as part of the type, then equality and copy
cannot be implemented as a function of only the type

Such a type is constructionally incomplete

class incomplete_int_array {

unique_ptr<int[]> data_;
public:

explicit incomplete_int_array(size_t size) : data_(new int[sizel()) { }
Hi

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Copy and Equality

If any value of an object can be distinguished through the public interface then equality can be implemented
as a non-member, non-friend function

Such a type is equationally complete

equationally complete => constructionally complete

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Copy and Equality

Copy and equality are composed properties

Two objects are equal iff only if their essential parts are equal
An object is copyable iff the essential parts are copyable

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Copy and Equality

An essential part of an object is a part that contributes to its value and is not simply part of the representation

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Equality of Functions

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Equality of Functions

Two functions are equal if given the same argument they return the same value

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Equality of Functions

Two functions are equal if given the same argument they return the same value

In C, we fall back to a representational equality through identity

assert(log2f !'= loglof);

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Equality of Functions

Two functions are equal if given the same argument they return the same value

In C, we fall back to a representational equality through identity

assert(log2f !'= loglof);

Unfortunately in C++ function objects (including lambdas) do not define equality

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Equality of Functions

Two functions are equal if given the same argument they return the same value

In C, we fall back to a representational equality through identity

assert(log2f !'= loglof);

Unfortunately in C++ function objects (including lambdas) do not define equality

Functions objects are copyable and copies are equal, however they are equationally incomplete

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Copy and Equality

Expected complexity of copy is O(areaof(T)) worst case

class int_array {
size t size_;
unique_ptr<int[]> data_;
public:
explicit int_array(size_t size) : size (size), data (new int[size]()) { }
int_array(const int_array& x) : size (x.size_), data_(new int[x.size_])
{ copy(x.data_.get(), x.data_.get() + x.size , data_.get()); }

int_array& operator=(const int_array& x); // *x

const intx begin() const { return data_.get(); }
const intx end() const { return data_.get() + size ; }
size_t size() const { return size_ ; }

};

bool operator==(const int_array& x, const int_array& y)
{ return (x.size() == y.size()) && equal(begin(x), end(x), begin(y)); }

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Relationships

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Relationships

As soon as we have two objects we have implicit relationships

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Relationships

As soon as we have two objects we have implicit relationships

A memory space is a container object

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

As soon as we have two objects we have implicit relationships

A memory space is a container object

When an object is copied, any relationship that object was involved in is either severed or maintained

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Reified Relationships

A reified relationship is a relationship represented by an object
As an object, a reified relationship is copyable and equality comparable
When a reified relationship is copied, the relationship is either maintained, severed, or invalidated

We may choose not to implement copy for relationships

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Managing Relationships

Chapter 2: Algorithms

Goal: No Raw Loops

Managing positional relationships
Chapter 4: Runtime Polymorphism

Goal: Shift Polymorphism to Point of Use

Managing owned relationship by transforming to whole-part relationship
Chapter 5: Concurrency

Goal: No Raw Synchronization Primitives

Managing relationships between objects and the thread of execution

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Whole-Part Relationship

A part which is referred to indirectly is a remote part

An object with remote parts can be moved
Moving an object only requires storage for the local parts
Any reified relationship can be maintained and moved

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Whole-Part Relationship

A part which is referred to indirectly is a remote part

An object with remote parts can be moved
Moving an object only requires storage for the local parts
Any reified relationship can be maintained and moved ***

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Move

Move an object by moving all the local essential parts and moving the relationship to any remote essential
part

a=b,a—c=c=0> (move is value preserving)

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Move

Complexity of move is O(sizeof(T))

int_array(int_array&& x) noexcept = default;
int_array& operator=(int_array&& x) noexcept = default;

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Move

class int_array {
size t size_;
unique_ptr<int[]> data_;
public:
explicit int_array(size t size) : size (size), data_(new int[sizel()) { }
int_array(const int_array& x) : size (x.size_), data_(new intlx.size_])
{ copy(x.data_.get(), x.data_.get() + x.size_, data_.get()); }

int_array(int_array&& x) noexcept = default;
int_array& operator=(int_array&& x) noexcept = default;

int_array& operator=(const int_array& x); // *x
const intx begin() const { return data_.get(); }

const intx end() const { return data_.get() + size_ ; }
size t size() const { return size ; }

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Move

A moved from object is partially formed
assigned to
destructible

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Move

A moved from object is partially formed
assigned to
destructible

A moved from object does not represent a value

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Move

A moved from object is partially formed
assigned to
destructible

A moved from object does not represent a value

Move is an unsafe operation

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

**Assignment

Copy and Move provide transactional assignment

int_array& operator=(const int_array& x)
{ int_array tmp = x; xthis = move(tmp); return xthis; }

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

***| Lied

Any reified relationship can be maintained and moved

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

***| Lied

Any reified relationship can be maintained and moved

Unless the relations is a part-whole relationship

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

***| Lied

Any reified relationship can be maintained and moved

Unless the relations is a part-whole relationship

Don't invert the whole-part relationship

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Any reified relationship can be maintained and moved

Unless the relations is a part-whole relationship

Don't invert the whole-part relationship

Or understand that you must stay within the same whole

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Move Efficiency

C++ Move is not efficient

int_array(int_array& x, unsafe) : size (x.size), data_(x.data_.get()) { }

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Move Efficiency

C++ Move is not efficient

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Move Efficiency

C++ Move is not efficient

template <typename T>
void move_unsafe(T& x, voidx raw) { new (raw) T(x, unsafe()); }

template <typename T>
void move_unsafe(void*x raw, T& x) { new (&x) T(xstatic_cast<Tx>(raw), unsafe()); }

void swap(int_array& x, int_array& y)
{

aligned_storage<sizeof(int_array)>::type tmp;

move_unsafe(x, &tmp);
move_unsafe(y, &x);
move_unsafe(&tmp, y);

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Other operations on regular types

Default Construction
Representations Ordering
Serialization

Hash

Area

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

Chapter Conclusions

Understanding the physical nature of objects provides a framework for thinking about objects and types

Careful consideration of providing efficient basis operations is important to reuse
Sometimes the most efficient basis operations are unsafe

© 2014 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

N

Adobe

