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Abstract
For a GUI to remain responsive, it must be able to schedule lengthy
tasks to be executed asynchronously. In the traditional approach to
GUI implementation—writing functions to handle individual user
events—asynchronous programming easily leads to defects. En-
suring that all data dependencies are respected is difficult when
new events arrive while prior events are still being handled. Re-
active programming techniques, gaining popularity in GUI pro-
gramming, help since they make data dependencies explicit and
enforce them automatically as variables’ values change. However,
data dependencies in GUIs usually change along with its state. Re-
active programming must therefore describe a GUI as a collection
of many reactive programs, whose interaction the programmer must
explicitly coordinate. This paper presents a declarative approach
for GUI programming that relieves the programmer from coordi-
nating asynchronous computations. The approach is based on our
prior work on “property models”, where GUI state is maintained
by a dataflow constraint system. A property model responds to
user events by atomically constructing new data dependencies and
scheduling asynchronous computations to enforce those dependen-
cies. In essence, a property model dynamically generates a reac-
tive program, adding to it as new events occur. The approach gives
the following guarantee: the same sequence of events produces the
same results, regardless of the timing of those events.

Categories and Subject Descriptors D.2.11 [Software Engineer-
ing]: Software Architectures—Domain-specific architectures

General Terms Design, Theory

Keywords Dataflow constraint systems, Graphical user interfaces,
asynchronous programming

1. Introduction
For a Graphical User Interface (GUI) to remain responsive while
performing lengthy tasks, e.g., image processing or remote server
communication, it must support asynchronous execution. That is, it
must be able to begin new tasks even though not all prior tasks have
completed. Asynchronous execution can take the form of executing
an algorithm on a separate thread, performing other work while
waiting on a server response, or even using time-sharing techniques
to make progress on multiple tasks at once.

(a) An auto-complete text box.
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(b) The data dependencies.

Figure 1: An example of an auto-complete text box, and a diagram
showing the data dependencies involved in its implementation.

Asynchronous execution is complicated by data dependencies
between tasks. Such dependencies mean that the execution of one
task may affect the outcome of another; therefore running tasks in
different orders or in parallel may yield different outcomes. The
programmer must carefully guard against execution schedules that
could produce incorrect results. This is not easy in the event-driven
GUI programming paradigm, where data dependencies implicitly
arise whenever multiple event handlers share variables.

By way of illustration, we examine one common GUI element:
the auto-complete text box. This element helps the user produce
a string to be used as input by some part of the application. Text
entered by the user becomes the input string, but is also used as
a parameter in an asynchronous search for related input strings.
Typically the search results are listed below the text box as a menu
from which the user, with a mouse or keyboard, may select an
alternate input string. Figure 1a shows an auto-complete text box
being used to select a city as a travel destination.

Figure 1b shows the dependencies that emerge in this seemingly
simple GUI element. Text entered by the user becomes the query
parameter, which determines the menu items. If a menu item is
selected, the index of the selected item and the contents of the
menu determine the input string; if no item is selected, the query
parameter itself becomes the input string. Finally, a change in the
contents of the menu affects the selected index: if the previously
selected city is in the new menu, its new index should be used;
otherwise the index should be reset. We show this dependency with
a dashed line, as it is only in effect when the menu changes.

We claim these dependencies are non-trivial, and that writing
code that enforces them is difficult using the traditional event-
driven programming model. To test this claim, we performed an
informal survey of six popular commercial travel sites (expedia.
com, orbitz.com, aa.com, united.com, hotels.com, and yahoo.com/
travel) and found that all six contained auto-complete text boxes
exhibiting inconsistent behavior. We define inconsistent behavior
as the same sequence of editing operations producing different out-
comes. In all cases, inconsistent behavior was triggered by a rapid
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succession of input events: presumably newer events were handled
before all dependencies had been enforced by previous event han-
dlers. Such behavior can lead to ignored input. In one representative
case, we typed “TKU” as the airport code and initiated a search.
The results were not for flights from Turku, Finland, but rather (in-
correctly) from Tampa, Florida. In this case, even though the K-
and U- keypress events occurred before the “initiate search” event,
they were handled after.

In a travel booking application the consequences of inconsis-
tencies are not that severe. If an error manifests, it is relatively
easy to detect and correct. Further, users learn to avoid errors by
adapting their use, e.g., to wait for the GUI to catch up. It is not
hard, however, to find more harmful problems in other widely used
applications. In a recent interaction with the Blackboard system
(www.blackboard.com, used by the majority of US Universities)
we noticed that entering students’ grades quickly leaves behind nu-
merous erroneous entries as keystrokes get ignored or assigned to
wrong entries. We argue that these examples are not anomalies, but
rather indicative of a larger problem—these applications have mil-
lions of users and they can be expected to have been developed with
ample resources and by competent programmers, yet they manifest
glaring errors in their most basic functionalities. The problem of
GUI inconsistencies is clearly systemic.

The event-driven programming model is at least partially to
blame: even after the programmer understands all dependencies in
a GUI, there is still the formidable task of ensuring that they are
correctly enforced in all possible interleavings of different event
handlers. To relieve the programmer from this task, we propose a
declarative approach to GUI programming where the data depen-
dencies are explicit and enforced by the system.

The central abstraction in our approach is what we call a prop-
erty model that holds data used by the GUI and manages dependen-
cies among the data using a hierarchical multi-way dataflow con-
straint system [3]. Property models are prior work of our research
group [13, 14], but as presented before, their operation was defined
with no regard to asynchronicity. This paper shows how property
models can orchestrate asynchronous responses to user events, and
guarantee both responsiveness and consistent results.

The key idea of our approach is to divide the work of the multi-
way constraint system into two phases. To react to changes in the
system’s variables, the first phase determines which dependencies
must be recalculated, and produces a plan for performing those
computations in a consistent order. The second phase performs
the computations and updates variables according to the plan. The
first phase executes synchronously. The second phase is allowed
to proceed asynchronously at its own pace, in any order permitted
by the plan—the results are consistent and, assuming no side-
effects, deterministic. After the first phase finishes, the GUI can
immediately accept new events. An upper limit for the execution
time of the first phase can be determined for each constraint system.
In practice the execution is often instantaneous [15], so the GUI is
guaranteed to always remain responsive.

One way to characterize the two phases is that the first phase
generates a reactive program that executes asynchronously in the
second phase. A reactive program is one which responds to changes
in variables by automatically recalculating values for functionally
dependent variables. Various reactive programming frameworks
have recently gained popularity in GUI programming (see, e.g. [2,
17, 20]). These frameworks build reactive programs from a static
description of data dependencies. Data dependencies in a GUI,
however, often change based on user interaction, which requires
programmers to define multiple reactive programs and coordinate
their use. By dynamically generating a reactive program from the
description of a constraint system, property models simplify GUI
programming while guaranteeing consistent results.

2. Background
A property model is an abstraction that automates many parts of
GUI implementation. It is not tied to any particular language or
GUI framework; rather, we assume it to be a library of the lan-
guage, call it the implementation language, in which the GUI is im-
plemented. Our proof-of-concept implementation [12] is targeted
for developing web applications in JavaScript. Here we give an
overview of property models and their role in GUI implementation.

2.1 Property Models
The traditional GUI programming model is organized around
events which occur during the lifetime of the application: the pro-
grammer writes and registers event-handling functions for call-
back on appropriate events. The difficulty of programming complex
GUIs with this model has long been recognized [13, 22], and it has
resulted in search for alternatives. We identify two trends emerging
from this search in which property models find their roots.

The first trend is the focus on the separation of concerns,
which has resulted in design patterns that divide GUI appli-
cations into clearly delineated components, including Model-
View-Controller [18], Presentation-Model [10], and Model-View-
ViewModel (MVVM) [11]. The most recent of these, the MVVM
pattern, divides the application into three parts. The Model is re-
sponsible for the “business” data and logic and is generally inde-
pendent of the UI. The View is responsible for the presentation
and translating user actions into events; it controls the behavior of
the individual elements (sometimes called widgets or controls) that
compose the GUI. The third component, the View-Model, is the
application’s model, or abstraction, of the View. It maintains the
data used by the GUI and provides logic defining how the interface
behaves as a whole. This division of responsibilities is well suited
for a property model, which neatly fills the role of a View-Model.

The data and logic of the View-Model are connected to the
widgets and events of the View through connections called data
bindings, or simply bindings. The purpose of bindings is to keep
the data of the View “in sync” with the data of the View-Model:
changes to one are automatically propagated to the other.

As a View-Model, the property model represents the current
state of the GUI. Bindings ensure the View always reflects the
current state of the GUI, and that changes to data of the View are
translated into changes in GUI state; we refer to these changes as
edits. Thus, the operation of a GUI based on a property model
proceeds as follows. User events are translated by bindings into
edits of the property model. The property model responds to the
edits by producing a new GUI state. The resulting GUI state is
translated back to the View by bindings.

The second trend which contributes to property models is the
replacing of event-handling code with dataflow constraints. A
dataflow constraint specifies how a variable’s value should be cal-
culated as a function of other variables, every time those other
variables change. Many GUI frameworks today provide constructs
for defining one-way dataflow constraints [17, 24, 25]. A system of
one-way dataflow constraints may be viewed as a reactive program.

Property models, too, use dataflow constraints to respond to ed-
its. Unlike in most GUI frameworks, property models’ constraints
can be multi-directional. They are maintained by a hierarchical
multi-way dataflow constraint system, summarized below; Zanden
provides a thorough discussion [32] of the kind of constraint sys-
tems we use with property models. A system of multi-way dataflow
constraints may be viewed as a generator for a reactive program.

2.1.1 Multi-way Dataflow Constraints
A multi-way dataflow constraint represents a relation over a set
of variables. When the relation holds, we say the constraint is
satisfied. The relation of the constraint is not defined explicitly, but
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Figure 2: A hypothetical form for determining shipping prices.
Note the large number of data dependencies.

rather implicitly through a set of constraint satisfaction methods,
or simply methods. Each method is a function that calculates new
values for some variables of the constraint using the remaining
variables as inputs. A method should enforce the constraint. That
is, after execution of the method, the constraint should be satisfied.
Of the property model’s variables, a method should only read its
inputs, and only write to its outputs, but a method does not need to
be referentially transparent.

Constraints can have any number of methods. The only require-
ments for a constraint are, first, that the output variables of one
method may not be a superset of the output variables of another,
and, second, that every method must use all of the constraint’s vari-
ables. A method violating the first requirement would be useless; it
would never be selected as part of any plan for solving the system
(see Section 2.1.2). The second requirement, known as method re-
striction [29], ensures that a plan is found in polynomial time [31].

As an example of constraints arising in GUIs, we consider the
GUI shown in Figure 2. In this hypothetical shipping application,
packages are classified by weight and volume into one of several
“package classes;” a package’s shipping price is a function of its
class and the shipping distance. Any field in the GUI may be edited;
other fields are updated accordingly. The GUI thus supports several
modes of interaction: the user may determine the price of shipping
a package a certain distance, or how far a package can be shipped
for a certain price, or even what shipping class may be shipped a
certain distance for a certain price. Furthermore, the user may enter
the package class directly, or choose to enter the weight and volume
of the package instead, or the weight and dimensions.

First, we consider the constraint between the volume v of a
package and its dimensions x, y, and z. The relation for this con-
straint is v = xyz. The constraint itself is defined by four methods,
x←v/yz, y←v/xz, z←v/xy, and v←xyz, that each calculate a new
value for one variable from the remaining three. We label the func-
tions for these methods A, B, C, and D, respectively.

Next, we consider the constraint amongst volume, weight w, and
class c of a package. The weight and volume determine the class of
a package according to some function E, but we can also query for
a representative weight and volume for a given class according to
another function F (E and F are not shown). The two methods of the
constraint are thus (w, v)←E(c) and c←F(w, v).

The third constraint is between the package class, shipping
distance d, and shipping price p. However, this constraint is difficult
to define because many price/distance combinations do not exactly
match a shipping class. By adding the variable m to represent
the maximum allowed price, we can define the relation like so:
a package of class c can be shipped a distance d for a price p,
no greater than m. This constraint can be implemented by three
methods. The first method, (c, p)←G(d,m), determines the largest
package class c which can be shipped a distance d for a price no
greater than m, and the actual price p of the shipping. The second
method, (d, p)←H(c,m) determines the greatest distance for which

a package of class c can be shipped for a price no greater than
m, and the actual price p of the shipping. And the third method,
(m, p)←I(c, d) determines the price p of shipping a package of class
c a distance d; this price also becomes the maximum price m.

We assume here that the binding of the Price text box reads
from p and writes to m. In this way, the user enters the maximum
price and sees the actual calculated price.

2.1.2 Hierarchical Multi-way Dataflow Constraint Systems
A multi-way dataflow constraint system is responsible for ensuring
that a collection of multi-way dataflow constraints are satisfied. It
does this by executing one method from each constraint, taking care
that once a method for a constraint has been executed, no variables
of that constraint are modified. This means executing the methods
in an order where no method outputs to a variable after it has been
used (either as input or output) by another method. We call any
execution order that satisfies this condition a valid execution order.

To satisfy all constraints in the constraint system, that is, to solve
the system, involves two steps. First, selecting the methods to be ex-
ecuted: one from each constraint, such that a valid execution order
exists. This set of methods is called the plan. Second, executing the
methods of the plan in a valid execution order.

Multi-way dataflow constraint systems can be underconstrained;
multiple plans may exist for solving the system. Each plan, how-
ever, is unique in the set of variables not used as output by any
method. A ranking of variables thus gives a ranking for plans, so
that a unique “best” solution can be chosen. This is accomplished
in the following three steps.

First, we add a stay constraint for each variable in the system.
A stay constraint has one variable, and one method that outputs to
the variable. The method is a constant function with the variable’s
current value. Adding stay constraints makes the system overcon-
strained; no plan can enforce all stay constraints.

Second, we prioritize the stay constraints, making them totally
ordered. When a variable is edited, its stay constraint is promoted
to the highest priority. Thus, the hierarchy of stay constraints cor-
responds roughly to the order in which variables have been edited.1

Third, we use the hierarchy of constraints to select the plan
that enforces the highest priority constraints. More precisely, if we
characterize each plan by a sequence of the constraints it enforces,
in order from highest to lowest priority, then the constraint system
selects the plan which is lexicographically greatest. Because our
hierarchy reflects the editing order, the system will have a bias
towards preserving variables more recently edited by the user.

We define two editing operations for the constraint system. The
touch operation promotes a constraint to the highest priority, and
the set operation assigns a new value to a variable and also touches
the stay constraint for that variable. An edit of the system may be
defined as a sequence of one or more touch and set operations. The
constraint system is solved after each edit.

2.1.3 Dataflow Graphs
The key to managing asynchronous computations in a GUI is mak-
ing all dependency information explicit. Property models capture
this information in three directed graphs, defined in terms of the
constraint system’s variables, methods, and constraints. Here, we
discuss two of these; the Evaluation Graph [14] is not relevant to
this article. We let V represent the set of all variables and M the set
of all methods (every method of every constraint) in the system.

Constraint graph The constraint graph G = 〈N, E〉 is a bipartite
directed graph. The node set N is V ∪ M. The edge set E contains
an edge (v,m) if variable v is an input of method m, and an edge

1 There are other occasional circumstances in which a constraint’s priority
may be altered; they are beyond the scope of this paper.

123



p

mc

dH
w

v

F

x y

z

B

G I
E

A D

C

Figure 3: A constraint graph for the shipping GUI. Square nodes
are variables, round nodes are methods. Dashed edges are methods’
inputs, solid their outputs.
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Figure 4: A solution graph based on the constraint graph of Fig-
ure 3. This solution graph shows plan {B, F,H}.

(m, v) if v is an output of m. The constraint graph represents every
potential dependency that exists in the constraint system.

The constraint graph for the shipping form example is shown
in Figure 3. This graph reflects the three constraints we defined
in Section 2.1.1; we have omitted the stay constraints. Constraints
are not explicit in this graph, but because of method restriction, we
may deduce them: two methods m and n are in the same constraint
iff they have the same graph neighborhood.

Solution graph The solution graph represents the dependencies
enforced by a particular plan. Specifically, given a constraint graph
G = 〈V ∪ M, E〉 and a plan P ⊆ M, a solution graph is the node-
induced subgraph S = G[V ∪P]. By the definition of a plan, the
solution graph is acyclic. Valid execution orders of a plan are all
the topologically sorted sequences of the methods of P.

Figure 4 shows one possible solution graph for the shipping
form. The graph represents the plan P = {B, F,H}; valid execution
orders are those in which F comes before H.

3. The Core Reactive Program
Generally, reactive programs are described by a single dataflow:
one sequence of computations to be repeated for every change in
input. Because dataflow in a property model may change, its reac-
tive program must be constructed dynamically. The program is con-
structed in layers. User events are translated to edits that the prop-
erty model reacts to by scheduling new computations to resolve
dependencies, resulting in a new layer of the reactive program.

At the heart of this construction process is a multi-way con-
straint system. This system responds to edits by computing a plan
for enforcing constraints as described in Section 2.1.2, but rather
than executing the plan’s methods immediately, it merely sched-
ules them. The planning and scheduling is an atomic step to ensure
consistent behavior; the methods themselves, however, may be exe-
cuted asynchronously. Execution of the reactive program proceeds
autonomously: methods execute as their inputs become available,
the View is updated to reflect new values, and older layers of the
reactive program that are no longer needed are reclaimed.

3.1 Variables
A variable of a property model represents a value that changes over
time. Variables’ values do not change continuously; they change

only in response to an edit (i.e., set or touch) of the property model:
either as a direct result of the edit, or as a result of solving the
constraint system in response to the edit. Once the system has been
solved, all variables remain constant until the next edit.

We represent variable values using a well-known asynchronous
programming construct: a promise [19]. A promise represents a
value that may not yet be available, but will be in the future. A
promise whose value is not yet available is pending. Once the value
becomes available, the promise is fulfilled. We may subscribe to a
promise by providing a callback function to be invoked with the
value of the promise once it is fulfilled. Subscribing to a fulfilled
promise results in the callback being invoked at the next oppor-
tunity. Promises may also be rejected to indicate that the process
intended to produce its value has failed and therefore the value will
never be available. We consider rejected promises in Section 4.2.

For each variable in the system, we define a sequence of
promises that we call the promise history. The promises of the
promise history correspond to every value given to the variable
over the life of the program, ordered by time. The last promise in
the promise history, known as the current promise, represents the
current value of the variable. To assign a new value, we add a new
promise to the end of the promise history. This promise may be
pending. Promises are only added to the history, never removed.

3.2 Methods
Methods define the dataflow between the promises of the reactive
program. In an asynchronous property model, methods are repre-
sented by functions whose inputs and outputs are promises. When
called by the constraint solver, these functions do no real work:
they merely subscribe to the input promises, construct the out-
put promises, and schedule the work which will fulfill the output
promises once input promises are fulfilled. Since the actual work
of a method will occur later, we say that when the constraint solver
executes the method’s function, it schedules the method.

It is through methods that the reactive program may achieve
asynchronous execution. Methods are free to offload work to, e.g.,
other threads or remote servers, thus freeing the current thread
to execute other methods or respond to user events. We make no
assumptions regarding the manner in which this “offloading” is
accomplished. In our JavaScript implementation a method may
schedule work on a different thread using web workers, on a remote
server using Ajax, or simply at a later point in the current thread
using a timer event. Which approach, if any, a method uses does
not affect any other part of the reactive program.

To aid the discussion below, we define the term method activa-
tion for a single execution of a method: what starts with scheduling
a method and ends when all output promises are resolved. Although
a method activation is a computation and does not have concrete
representation in our system, it is useful to think of it as an entity.
Like promises, activations are elements in our reactive programs,
each representing the execution of a certain method with certain
inputs which produced certain outputs. And, just as we associate
every variable with a promise history, so may we associate every
constraint with a sequence of activations, the activation history.
The activation history represents every activation of any method
of the constraint, ordered by the time they were scheduled.

3.3 Constructing the Reactive Program
As stated previously, the reactive program is generated incremen-
tally in response to edits to the property model. The very first edit,
and therefore the beginning of the reactive program, occurs as vari-
ables are initialized according to the property model’s specification.
Subsequent edits correspond to events in the life of the GUI.

The property model responds to each edit by generating a plan
for enforcing the constraints of the system, as described in Sec-

124



tion 2.1.2. It then schedules methods of the plan in a valid execution
order. Scheduling a method involves three steps: first, the current
promise for each input variable is retrieved; second, the method’s
function is invoked, passing in the retrieved promises as arguments;
and third, each promise returned by the function is added to the end
of the corresponding output variables’ promise history.

Some methods of the plan may not need to be scheduled, be-
cause executing them is known to have no effect. Given a method
m in constraint c, if the last activation in c’s activation history is an
activation of m, and if the inputs of m remain unchanged since that
activation, then we assume executing m would leave its outputs un-
changed. Thus, the scheduled methods are those not selected in and
those whose inputs have changed since the previous generation.

After all methods have been scheduled, the property model’s
response to an edit is complete; program control can return to
the main event-loop, while method execution proceeds asyn-
chronously. As input promises are fulfilled, method activations
perform their work and fulfill their output promises. In this way,
the constraints of the system will eventually be enforced.

The property model’s response to an edit, planning and schedul-
ing methods, is atomic—edit events are queued if planning and
scheduling for prior edits have not been completed. The worst-case
execution time for planning is quadratic in the number of variables,
methods, or constraints [32]. In practice planning is often instan-
taneous [15] and no planning is needed (the dataflow remains un-
changed) when an edit is to a variable whose stay constraint is al-
ready enforced, e.g., when repeatedly editing the same variable.

After the response, every variable which will receive a new
value because of the edit has been given a promise for that value.
Should some other code request the value of one of these variables,
it will receive the promise for the updated value, regardless of
whether or not its calculation has completed. Thus, the results of
any two equal sequences of edits will always be the same reactive
program, regardless of the differences in time intervals between the
edits in each sequence. If all methods of the constraint system are
referentially transparent, then so is the entire reactive program.

3.4 The Reactive Program Graph
As stated above, the life span of a property model consists of a se-
quence of edits, each followed by an update in which the constraint
system is solved. We refer to these successive updates as gener-
ations of the system. The solution graph describes dependencies
between variables for a single generation, but not the dependencies
that may arise between generations.

To capture the dependencies over the lifespan of the GUI, we
define the reactive program graph. The nodes of the graph consist
of promises and activations. The graph contains a directed edge
from every promise to every activation taking the promise as input,
as well as an edge from every activation to every promise it pro-
duced as output. Although the entire graph is simply a DAG, it is
illustrative to visualize it in layers stacked on top of each other: one
layer for every generation, containing all activations and promises
generated while solving the constraint system in that generation.

By way of example, Figure 5 shows the reactive program graph
of one possible sequence of edits in our shipping example. Promise
nodes are labeled by the variable to which the promise is assigned
and activation nodes by the methods that scheduled them. Each
label is sub-scripted with a generation. Generation 1 shows that
the constraint system was initially solved using the plan {C, E,G}.
This plan generates new promises for the variables z, v, w, p, and
c, as indicated by the nodes sub-scripted with 1. Variables x, y, d,
and m retain their initial values given when the property model was
defined, as indicated by the nodes sub-scripted with 0.

Generation 2 is the result of editing variable w. This triggers an
update producing the plan {C, F, I}, which gives new promises to vari-
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Figure 5: A reactive program graph based on the shipping form
constraint system. Rectangles represent promises; circles represent
method activations. Nodes from the same generation are grouped
together in generations, which are ordered by time along the y-axis.
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Figure 6: A “top-down” view of the reactive program graph from
Figure 5, showing the most recent activation for each constraint and
the most recent promise for each variable.

ables p, c, and m. Variable v did not receive a new promise; there-
fore, activation F2 uses promise v1, which is the current promise for
v, as input. Similarly, activation I2 uses promise d0, which is the cur-
rent promise for d. Because the inputs to method C are unchanged,
it does not need to be scheduled in this generation.

Generation 3 is the result of editing variable v. This does not
alter the plan; however, all methods have at least one changed input,
and thus must be scheduled. Note that activations in this generation
use promises from both previous generations.

The reactive program graph provides a clear visualization of the
flow of data over the lifetime of the application. We imagine it in
three-dimensional space: each generation laid out in its own plane,
stacked on top of the previous generation. Arranging the nodes so
that promises for the same variable are directly over one another
reveals the promise history for each variable as a vertical column.
Arranging method activations for the same constraint similarly re-
veals the activation history for each constraint. Viewing the graph in
this arrangement from above, we see only the most recent promise
for each variable and the most recent activation for each constraint.
Such a “top-down” view of the graph found in Figure 5 may be seen
in Figure 6. Once all activations are complete and all promises ful-
filled, then this is the view the GUI will make visible to the user.

3.5 The Resulting GUI
As mentioned in Section 2.1, variables of the property model are
connected to the view through data bindings. A variable publishes
its value every time it changes; a binding subscribes to these no-
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Figure 7: The shipping form after Generation 3 of Figure 5, while
activation F3 is still running.

tifications and updates the View when they occur. In this way the
results of the property model are made visible in the GUI.

A variable can obtain a new value when a promise in its promise
history is fulfilled. Often it is the current promise, but in general
the history may contain several pending promises which can be
fulfilled in any order. The view should reflect the most current value
of a variable, which is the value of the last fulfilled promise in the
variable’s promise history. Therefore, when a promise is fulfilled,
the variable will publish the promise’s value as its own value unless
a later promise in its promise history has already been fulfilled.

Consider again the “top-down” view of the reactive program
graph shown in Figure 6. We may imagine that promises which
are pending are transparent, so that for each variable we see the
topmost fulfilled promise. This is the view reflected in the GUI.

We call a variable pending or fulfilled depending on whether its
current promise is pending or fulfilled, respectively. It is helpful to
the user to know whether a View shows a pending value that might
change, or a value that will not change until an edit occurs. To this
end, for each variable we define a property named pending which
is true when the variable is pending and false when it is fulfilled.
This property publishes its value in the same way a variable does,
and it is thus suitable for binding to the View.

Figure 7 shows the shipping form GUI as it appears just after
Generation 3 in Figure 5: the activation I3 has completed, F3 is
running, and C3 is scheduled. The promises c3, p3, and m3 are
pending, and therefore the drop-down list for the shipping class
reflects the value of c2 and the text box for price the value of p2.
These elements will be updated when p3 and m3 are fulfilled.

To give a different appearance to GUI elements whose corre-
sponding variables are pending, we used a binding that updates the
element’s CSS class based on the variable’s pending property; we
then used a CSS stylesheet to attach a different background color
and add a “spinning” graphic to elements with the appropriate class.

Note the work required by the programmer to get this advanced
GUI behavior: define the view, the constraint system, and the data
bindings. From these specifications, shown in part in Section 5,
a property model derives a GUI implementation which schedules
asynchronous computations, remains responsive while the compu-
tations are running, and gives notifications of their progress and
results. Not only that, but the implementation guarantees that any
sequence of edits will always produce consistent results, no matter
how quickly (or slowly) those edits occur.

3.6 Detecting Unreachable Program Elements
Up to this point we have described a property model as if it stored
every promise of a promise history and every activation of a ac-
tivation history. Here we consider when elements of the reactive
program may be released and their resources collected.

We define a program element, a promise or an activation, to be
irrelevant when it can no longer affect the GUI. The methods of a
property model do not directly affect the GUI; their only external

effect is to fulfill output promises. Fulfilled promises directly affect
the GUI when bindings propagate their values to the view, which is
when all more recent promises in the same promise history are still
pending. We call such promises visible.

Just because a promise is not visible does not mean it is irrele-
vant; other promises that are visible may depend on its value. We
can use the reactive program graph to trace all the dependencies
of a program element. This leads us to the following definition: a
program element is irrelevant if and only if there are no paths in the
reactive program graph from that element to a visible promise.

Irrelevant promises may be discarded. Activations which are
irrelevant may be unscheduled so that they will no longer respond
to the fulfillment of their input promises, and then discarded. Thus,
while new program elements are added to the “top” of the reactive
program graph in response to edits, old program elements may be
removed from the “bottom” of (or anywhere in) the graph as they
become irrelevant. Memory usage can be expected to stay constant.

Note that even though we describe the identification of irrele-
vant program elements as a graph traversal task, no graph search is
necessary. Our implementation uses a reference counting scheme
in which promises keep track of their subscribers; when a promise
looses all subscribers it becomes irrelevant and may be discarded.

4. Extending the Reactive Program
We have added several features to the core reactive program defined
in Section 3. Here we describe two of them: accessing prior values
in the reactive program and handling failure in method activation.

4.1 Accessing Prior Values
Each edit of a property model engenders a new generation of the
reactive program in which method activations compute new values
for some variables. While creating a new generation, we make the
following distinction: the prior value of a variable is its value before
the new generation; the current value is its value after the new
generation. The reactive program graph gives a clear interpretation
for current and prior values. Generally, a method activation is
passed the current value of each of its inputs. In some methods,
prior values of inputs are needed too, e.g., to calculate the difference
between the previous and current generation. The prior values of
output variables can be useful too.

Methods can specify whether they want the current or prior
value of each input variable, and they will be passed the appro-
priate promise when the method is scheduled. The current value is
always represented by the current promise (the last element of the
promise history); the prior value by either the promise immediately
below the current promise, if the variable is written to in the new
generation, or the current promise, if it is not. In the latter case, the
current and prior values are represented by the same promise.

As an example of a constraint accessing a prior value of a vari-
able, consider the constraint in our shipping form example between
the volume, width, height, and length of a package. In our previous
specification of this constraint, setting volume resulted in a change
to just one dimension using the other two dimensions as inputs. An
alternative formulation of this constraint might distribute a change
in volume proportionally among all three dimensions. This new
constraint consists of the old method v←whl, which we previously
labeled D, and a new method we label J: (w, h, l) ← (rw′, rh′, rl′)
where w′, h′, and l′ are the previous values of, respectively, w, h,
and l, and where r =

3√v/(w′h′l′).
Because no method may output to a prior value, whether or not

a method uses prior values has no effect on the plan of the con-
straint system, nor on the valid execution orders of a plan. Thus, we
add no edges to the constraint graph or the solution graph for uses
of prior values. However, we do add edges to the reactive program
graph between promises for prior values and the activations that use
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Figure 8: Program graph for a constraint using prior values.

them, representing additional data dependencies. These dependen-
cies are identical to dependencies for current values: they prevent
the method from executing until the promise is fulfilled, and pro-
vide paths by which program elements may be considered relevant.
Figure 8 shows the reactive program graph for an activation of our
new method, J. We do not specify which generation w′i , h′i , or l′i
come from; we know only that they are from a prior generation.

4.2 Failure in Method Activation
A method activation executes arbitrary user code, and thus is sub-
ject to, e.g., resource allocation failure, network failure, exceptions,
etc. We can equate all these different error states with a failure to
terminate, since the end result is the same: the activation’s output
promises are never fulfilled. From the property model’s perspec-
tive, a promise which is pending behaves as if it is in an error state.
No computations which depend on a promise may proceed while it
is pending. The outputs of an activation will be pending as long as
any of its inputs are pending. If a method activation fails to termi-
nate, its output promises remain stuck in this error state forever.

If a variable’s most recent promise is stuck in a pending state,
then the variable itself will be as well. To recover from this error
state, a variable must be provided with a new promise that can be
fulfilled. As an example, refer back to the reactive program graph
in Figure 5. Let us suppose that activation G1 fails, and consider the
effect on each of the three generations of the program.

In Generation 1, G1 fails to produce values for p1 and c1. Thus,
p1 and c1 will remain pending forever, as will their dependencies,
w1, v1, and z1. At the end of Generation 1, p, c, w, v, and z are all
stuck in the pending state.

In Generation 2, we make an edit to variable w, resulting in
promise w2. Assuming this promise is fulfilled, w is no longer pend-
ing. This also makes w1 invisible and (because the only promise
reachable from w1 is itself) irrelevant. This generation has new ac-
tivations of F and I. However, because F2 must wait on v1, and I2
must wait on c2, these activations never begin execution. Thus, vari-
ables p, and c remain stuck in the pending state, as do v and l which
are unchanged from the previous generation. Not only that, m be-
comes stuck in the pending state as well; any variable whose value
depends on a pending variable becomes pending itself.

In Generation 3, we make an edit to variable v, resulting in
promise v3. Again assuming this promise is fulfilled, activations
C3 and F3 have no pending inputs and may execute; once F3 finishes,
I3 may execute as well. If these three activations complete success-
fully, then all pending variables will have their most recent promise
fulfilled, meaning they will no longer be pending. Also, promises
z1, v1, p1, p2, c1, c2, m0, and m2 will become invisible. A graph
search will show that they are also irrelevant, as are activations C1,
E1, G1, F2, and I2. Of these, only G1 had begun execution; the remain-
ing activations may simply be unscheduled.

At the end of Generation 3, all effects of the failed activation
have been covered up. There are no longer any pending promises
or scheduled activations. The state of the property model is exactly
the same as it would have been if G1 had succeeded. We were able to
recover from the error state without re-executing G, the method that

1 function D( x , y , z ) { return x * y * z ; }
2

3 function J ( x , y , z , v ) {
4 r = Math . c b r t ( v / ( x * y * z ) ) * 1 0 0 ;
5 return [ r * x , r * y , r * z ] ; }
6

7 function F( v , w) {
8 p = new hd . Promise ( ) ;
9 performShippingClassQuery ( v , w,

10 function ( c ) { p . reso lve ( c ) ; } ) ;
11 return p ; }

Figure 9: The JavaScript definitions for three methods of the ship-
ping form constraint system.

caused the failure. This illustrates the resilience of property models:
even if a method is poorly written so that it at times crashes or never
terminates, the property model continues to operate, and the GUI it
governs stays responsive and in a well-defined state.

We can make the following guarantees about the behavior of
a property model when method failure occurs. First, the same se-
quence of edits yields the same reactive program regardless of
method failure. Method failure occurs after the program has been
generated; its only effects are to prevent variables from being ful-
filled. Second, the values of all fulfilled variables are consistent,
meaning all constraints using only fulfilled variables are satis-
fied. And, third, if all methods of the property model are refer-
entially transparent upon success—meaning they may fail non-
deterministically, but, if they succeed, their outputs are completely
determined by their inputs—then in every possible outcome of the
program in which a variable is fulfilled, it has the same value.

Although forever-pending serves well as an error state for the
property model, it is not very useful to users. When a method fails,
a GUI should notify the user to stop waiting for a value and start
taking action to correct the error. To enable error notifications, a
method may indicate failure by rejecting its output promises. A
rejected promise is treated as a pending promise that will never be
fulfilled. If any input promise of a method activation is rejected, the
activation rejects all of its output promises, thus spreading the error
state the same way that the pending state spreads.

We call variables whose current promise has been rejected stale.
Stale variables require a new value before they can be used again.
To help identify stale variables, we define a property named stale
which is true exactly when the variable is stale. This property is
suitable for binding to the View; thus, we may alter the appearance
of elements bound to stale variables, just as we did elements bound
to pending variables in Figure 7.

When a method rejects a promise, it may provide—as an al-
ternative to the promise value—an error value. In stale variables,
the error property contains the error value with which the current
promise was rejected. This property can also be bound to the View,
providing a mechanism by which a method can communicate the
cause of failure. By reflecting variables’ stale and error properties,
rich feedback on errors is easy to automate.

5. Implementation
Our reference implementation of property models [12] is called
HotDrink. HotDrink is written in TypeScript, a statically typed vari-
ant of JavaScript, and compiled to a JavaScript library suitable for
use in a web application. This stand-alone library allows program-
mers to implement a GUI’s View-Model using HotDrink while still
using other JavaScript libraries to implement the View.

Here we illustrate HotDrink usage by implementing the ship-
ping form example. We begin with method implementation. We
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1 var contex t = new hd . Contex tBu i lder ( )
2 . vs ( "d , c , m, p , v , w, x , y , z " ,
3 { x : 25 , y : 50 , z : 40 w: 10 , d : 1500 } )
4 . c ( " v , x , y , z " )
5 .m( " ! x , ! y , ! z , v → x , y , z " , J )
6 .m( " x , y , z → v " , D)
7 . c ( " v , w, c " )
8 .m( " c → v , w" , E)
9 .m( " v , w → c " , F )

10 . c ( " d , p , m, c " )
11 .m( "d , m→ c , p " , G)
12 .m( " c , m→ d , p " , H)
13 .m( "d , c → m, p " , I )
14 . end ( ) ;
15

16 var pm = new hd . PropertyModel ( ) ;
17 pm. addComponent ( con tex t ) ;
18 pm. update ( ) ;
19

20 window . addEventLis tener ( " ready " , function ( ) {
21 hd . performDeclaredBindings (
22 context , document . body ) ; } ) ;

Figure 10: JavaScript that creates the property model for the ship-
ping form example with HotDrink.

use the method definitions given in Section 2.1.1, except that we
exchange the constraint {A, B, C, D} with the constraint {D, J} from
Section 4.1 in order to illustrate the use of prior values. Figure 9
shows the implementation of three of the methods of the constraint
system; the remaining four are similar. The names of the functions
match the methods that they implement.

As explained in Section 3.2, each method requires a function
whose inputs and outputs are promises. However, HotDrink uses
a “lifting” mechanism which can convert a function over values
into a function over promises. This allows methods to be written
as functions whose inputs and outputs are values; for example,
method D on line 1 is written as a function whose inputs and output
are numbers. Line 3 shows method J which takes prior values and
returns multiple outputs as an array.

Our lifting mechanism works for functions whose inputs and
outputs are any mixture of values and promises. The function F on
line 7, for example, takes values as inputs but returns a promise.
It uses an auxiliary function named performShippingClassQuery
(not shown) to look up a shipping class for the given volume and
weight. We assume it does this with an Ajax call, then invokes the
provided callback with the result. The callback fulfills the output
promise, thus completing the method’s duties.

Next, we define the property model’s variables and constraints.
These are created as fields in a special object called a context. A
context serves both as a component of the property model and
as a namespace, mapping names to variables and constraints. All
elements of a property model can be created directly using Hot-
Drink’s API; in this example, however, we create them using a
ContextBuilder factory object. This temporary object is created in
line 1. Its member functions are invoked on lines 2–13. The call to
end member function on line 14 finalizes the construction.

ContextBuilder’s members define an embedded-DSL for creat-
ing elements of a property model. The vs function creates the vari-
ables on line 2; the parameters are the variable names and a map of
initial values. Variables are initialized in the order declared, which
gives the initial priority ordering of stay constraints. To create a
constraint, c is first called to establish its variables, then repeated
calls to m define its methods. Creating a method requires a signa-
ture to define the inputs and outputs, and the method’s function.

1 Class :
2 <select data-bind=" hd . value ( c ) " > . . . < / select >
3

4 Volume :
5 < input type=" t e x t " data-bind=" hd .num( v ) " / >
6

7 Pr ice :
8 < input type=" t e x t " data-bind=" hd .num( hd . rw ( p , m) ) ,
9 hd . cssClass ( p . pending , ' pending ' ) ,

10 hd . cssClass ( p . s ta le , ' s t a l e ' ) " / >
11

12 <span data-bind=" hd . t e x t ( p . e r r o r ) " ></span>

Figure 11: Example HTML containing binding declarations for the
shipping form example.

Once the context is created, it is added to the property model,
as shown on line 17. We then call update to enforce all constraints,
creating the first generation of the reactive program. Finally, we
bind the property model’s variables to the View. In a web appli-
cation, elements of the view are not available until the Document
Object Model (DOM), has been built. Thus, line 20 registers a func-
tion for callback when the DOM is ready. This function initiates
binding by calling performDeclaredBindings with two arguments:
a context and a node of the DOM—here, document.body represent-
ing the entire body of the HTML document. HotDrink searches the
contents of the specified node, looking for HTML elements con-
taining binding specifications. It then attempts to bind according to
found specifications, using the given context to look up any names
it encounters.

To illustrate binding specifications, Figure 11 shows excerpts
of the HTML that creates the shipping form; the full HTML is a
bit long to include. Binding specifications are given as data-bind
attributes of tags; their value is JavaScript code that customizes the
binding for the tag.

HotDrink contains several functions for specifying common
bindings; we use some of these in Figure 11. The call to value on
line 2 specifies that the variable c should be bound to the value of
the select box; the call to num on line 5 that the variable v should
be bound to the value of the text box, and that the value should be
converted to a number in the property model. (Bindings can include
operations such as data conversion, formatting, and validation.) The
call to cssClass on line 9 specifies that the CSS class pending
should be added to the element whenever the pending property of
the variable p is true; and the call to text on line 12 that p’s error
property should be bound to the contents of the span element.

As can be seen on lines 8–10, a tag can have multiple binding
specifications, allowing it to reflect multiple values. This particular
binding is for the price text box, which reads from the variable p but
writes to the variable m. Rather than creating two separate bindings
for this, we reuse the num binding, but bind to a construction,
created by the rw function, that will read from p and write to m.

The code in Figures 9, 10, and 11, along with the method defi-
nitions and HTML that were not shown, are a complete implemen-
tation of the shipping form example using HotDrink.

6. Related Work
Over the years there has been much research into the use of con-
straints and constraint systems in GUI implementation, resulting
in many GUI toolkits and frameworks in which constraints play
some part, whether large or small. On one end of the continuum,
are GUI frameworks designed entirely around constraint systems
such as SkyBlue [29], Garnet [21], and Amulet [23]. These frame-
works primarily focus on visual tasks such as component layout and
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graphics. More recently, the Subtext [7] framework aims at simpli-
fied GUI implementation by providing automatic data layout and
constraint satisfaction, much like a spreadsheet.

At the other end of the continuum are existing GUI frame-
works which have added dataflow constraints to their toolkits—
frameworks such as OpenLaszlo [25], Flex [1], and JavaFX [16].
Generally these constraints are not used for maintaining relations
between arbitrary variables in the program, but rather for propagat-
ing changes in data to the View—the task we refer to as binding.
The programmer binds an expression to the View, and, as variables
in that expression change, the value of the expression is recalcu-
lated and the View is updated with the result.

In between are many toolkits and frameworks providing dataflow
constraints, but intended to be used in combination with some other
GUI framework to provide traditional GUI functionality. Many of
these, such as Knockout [17], ConstraintJS [24], and Facebook’s
React [27], also focus on binding. These frameworks are largely
complementary to ours, and could potentially be used to propagate
changes in a property model to the View. Other frameworks tend
to focus more broadly on reactive dataflow within a program. For
example, Microsoft’s Reactive Extensions (Rx) [20] can translate
changes in variables to automatic queries using LINQ. Babels-
berg [9] integrates constraints with the Ruby language.

Functional Reactive Programming (FRP) [8, 33] is reactive pro-
gramming based on purely-functional abstractions of events and
of values which change over time, known as behaviors or signals.
There are several GUI frameworks designed around FRP. Frame-
works such as FranTk [28], Fruit [5], and Yampa [6] are embedded
in Haskell, making them somewhat difficult to integrate with im-
perative GUI frameworks. Elm and Flapjax, on the other hand, are
two languages based on the concepts of FRP, but which compile to
JavaScript. There are also libraries that allow FRP-style program-
ming in imperative languages; for example, Bacon [2] brings FRP
to JavaScript, and Frappé [4] brings it to Java.

Property models distinguish themselves from other approaches
in three ways. The first is in the use of multi-way constraints. The
above systems primarily use one-way constraints, in which data al-
ways flows from one set of variables to a second set. A few systems,
such as Knockout and Subtext, also support two-way constraints—
i.e., a one-way constraint with an inverse function. ConstraintJS al-
lows the programmer to define different program states and specify
which constraints are active in each state. In theory, this mecha-
nism could be used to simulate multi-way constraints by making
a separate state for each possible dataflow. Additionally, Multi-
Garnet [30] extended Garnet with multi-way constraints.

The second distinguishing feature is the explicit representation
of dependency information as a data structure. This information
is the basis for several reusable algorithms. For example, we may
determine which variables are not being used, allowing widgets
bound to them to be disabled. Or we may determine user intent,
defined by which variables were edited directly by the user vs.
calculated by the system, which is needed for recording the use of a
GUI to a script. [13, 14] Additionally, as described in this paper, the
dependency information guides constructing the reactive program.

The third distinguishing feature is its approach to asynchronous
execution of dependencies. Many of these systems represent de-
pendencies as a function, making them strictly synchronous. Those
which allow asynchronous execution, such as Microsoft Rx and
Parallel FRP [26], are targeted for situations in which every event
must be handled, and the order of results is unimportant—e.g., a
web service replying to requests. A property model respects the or-
dering in which edits are made, yet allows computations to proceed
as soon as their inputs are available ensuring that each variable re-
flects the most current known value, and that computations made
irrelevant by more recent results are unscheduled.

1 var contex t = new hd . Contex tBu i lder ( )
2 . vs ( "q , m, i , s " )
3 . c ( "q , m" )
4 .m( " q → m" , function ( q ) {
5 var p = new hd . Promise ( ) ;
6 performQuery ( q ,
7 function (m) { p . reso lve (m) ; } ) ;
8 return p ; } )
9 . c ( "q , m, i , s " )

10 .m( "q , m, i → s " , function ( q , m, i ) {
11 return ( i >= 0) ? m[ i ] : q ; } )
12 . c ( " q ⇒ m, i " )
13 .m( "m, ! s → i " , function (m, c ) {
14 var i = m. indexOf ( c ) ;
15 return ( i >= 0) ? i : -1 ; } )
16 . cmd( " inc " , " !m, ! i → i " , function (m, i ) {
17 return ( i < m. length - 1 ) ? i +1 : i ; } )
18 . cmd( " dec " , " ! i → i " , function ( i ) {
19 return ( i >0) ? i -1 : i ; } )
20 . end ( ) ;

Figure 12: JavaScript code that creates a property model component
that defines the behavior of an auto-complete text box.

Elm permits an alternate type of asynchronicity by allowing
the user to specify that certain computations are to be performed
before all dependencies have been updated. This would be similar
to specifying that a method can execute before all of its input
promises have been resolved. This prevents the lengthy calculation
of a single dependency from blocking the flow of computation.
We could achieve this effect in a property model, by creating two
variables—one for the output of the lengthy calculation, and one for
the input of the method—and then binding the first to the second;
in this way, any time the first variable is modified, its value would
be copied to the second.

7. Conclusion
Graphical User Interfaces are costly to develop, and difficult to im-
plement correctly. We are used to encountering errors of various
severity in almost all applications that have non-trivial GUIs. Espe-
cially tricky to get right in the still dominant event-driven program-
ming model is the asynchronous execution of event handlers; two
sequences of the same, but differently timed, events often produce
different results in many GUIs, against the programmer’s intent.

This paper advocates for an alternative to event-driven GUI pro-
gramming. In our declarative property models approach, a GUI
implementation consists of a specification of data and its depen-
dencies in the GUI, and how that data is reflected by the GUI.
From these specifications, the property model dynamically gen-
erates a reactive program tailored to any given sequence of edits.
This program executes asynchronously and updates the GUI as it
progresses. Despite the many possible interleavings of events and
computations, the generated reactive program guarantees consis-
tent results for every sequence of editing operations, even when
some computations fail. The programmer is no longer responsible
for the error-prone task of coordinating asynchronous event han-
dlers.

We began this article with an example of inconsistent behavior
exhibited by the auto-complete text box. We finish with an imple-
mentation of this GUI element as a component of a property model,
shown in Figure 12. The variables q, m, i, and s represent the query
parameter, menu, selected index, and input string, respectively, and
the three constraints define the data dependencies shown in Fig-
ure 1b. We assume the function performQuery performs the asyn-
chronous query to retrieve a list of potential input strings, which it
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then passes as an array to the provided callback function. This array
becomes the contents of variable m, which is bound to the contents
of the menu below the text box.

This code uses two property model features not discussed in this
article. First, the constraint declaration "q⇒ m, i", which indicates
an optional constraint whose priority in the constraint hierarchy is
linked to the stay constraint for q; thus, the constraint will be en-
forced only when q has been edited more recently than m or i. Sec-
ond, the cmd function, which defines a command—a computation
using variables of the property model whose outputs are treated as
an edit. We may use commands to schedule an atomic update of the
property model. Here, the inc command increments the selected in-
dex, while the dec command decrements it. These commands may
be bound, e.g., to keystrokes to enable manipulation of the menu.

This code concisely captures all the dependencies of the auto-
complete text box, and it is much easier to understand and verify
than the collection of event handlers that implement the same func-
tionality in the event-driven programming model. Furthermore, this
code is a reusable component: multiple instances of this context can
be used in the same property model, each bound to a different auto-
complete text box; it can, of course, also be reused in other GUIs.
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