Generating Reactive Programs for Graphical User
Interfaces from Multi-way Dataflow Constraint Systems

Gabriel Foust

Texas A&M University, TX, USA
gfoust@cse.tamu.edu

Abstract

For a GUI to remain responsive, it must be able to schedule lengthy
tasks to be executed asynchronously. In the traditional approach to
GUI implementation—writing functions to handle individual user
events—asynchronous programming easily leads to defects. En-
suring that all data dependencies are respected is difficult when
new events arrive while prior events are still being handled. Re-
active programming techniques, gaining popularity in GUI pro-
gramming, help since they make data dependencies explicit and
enforce them automatically as variables’ values change. However,
data dependencies in GUIs usually change along with its state. Re-
active programming must therefore describe a GUI as a collection
of many reactive programs, whose interaction the programmer must
explicitly coordinate. This paper presents a declarative approach
for GUI programming that relieves the programmer from coordi-
nating asynchronous computations. The approach is based on our
prior work on “property models”, where GUI state is maintained
by a dataflow constraint system. A property model responds to
user events by atomically constructing new data dependencies and
scheduling asynchronous computations to enforce those dependen-
cies. In essence, a property model dynamically generates a reac-
tive program, adding to it as new events occur. The approach gives
the following guarantee: the same sequence of events produces the
same results, regardless of the timing of those events.

Categories and Subject Descriptors D.2.11 [Software Engineer-
ing]: Software Architectures—Domain-specific architectures

General Terms Design, Theory

Keywords Dataflow constraint systems, Graphical user interfaces,
asynchronous programming

1. Introduction

For a Graphical User Interface (GUI) to remain responsive while
performing lengthy tasks, e.g., image processing or remote server
communication, it must support asynchronous execution. That is, it
must be able to begin new tasks even though not all prior tasks have
completed. Asynchronous execution can take the form of executing
an algorithm on a separate thread, performing other work while
waiting on a server response, or even using time-sharing techniques
to make progress on multiple tasks at once.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

GPCE’15, October 26-27, 2015, Pittsburgh, PA, USA

© 2015 ACM. 978-1-4503-3687-1/15/10...$15.00
http://dx.doi.org/10.1145/2814204.2814207

Jaakko Jarvi

Texas A&M University, TX, USA
jarvi@cse.tamu.edu

121

Sean Parent

Adobe Systems, Inc.
sparent@adobe.com

City: New|
New York

New York

New Orleans

value

(a) An auto-complete text box. (b) The data dependencies.
Figure 1: An example of an auto-complete text box, and a diagram
showing the data dependencies involved in its implementation.

Asynchronous execution is complicated by data dependencies
between tasks. Such dependencies mean that the execution of one
task may affect the outcome of another; therefore running tasks in
different orders or in parallel may yield different outcomes. The
programmer must carefully guard against execution schedules that
could produce incorrect results. This is not easy in the event-driven
GUI programming paradigm, where data dependencies implicitly
arise whenever multiple event handlers share variables.

By way of illustration, we examine one common GUI element:
the auto-complete text box. This element helps the user produce
a string to be used as input by some part of the application. Text
entered by the user becomes the input string, but is also used as
a parameter in an asynchronous search for related input strings.
Typically the search results are listed below the text box as a menu
from which the user, with a mouse or keyboard, may select an
alternate input string. Figure la shows an auto-complete text box
being used to select a city as a travel destination.

Figure 1b shows the dependencies that emerge in this seemingly
simple GUI element. Text entered by the user becomes the query
parameter, which determines the menu items. If a menu item is
selected, the index of the selected item and the contents of the
menu determine the input string; if no item is selected, the query
parameter itself becomes the input string. Finally, a change in the
contents of the menu affects the selected index: if the previously
selected city is in the new menu, its new index should be used;
otherwise the index should be reset. We show this dependency with
a dashed line, as it is only in effect when the menu changes.

We claim these dependencies are non-trivial, and that writing
code that enforces them is difficult using the traditional event-
driven programming model. To test this claim, we performed an
informal survey of six popular commercial travel sites (expedia.
com, orbitz.com, aa.com, united.com, hotels.com, and yahoo.com/
travel) and found that all six contained auto-complete text boxes
exhibiting inconsistent behavior. We define inconsistent behavior
as the same sequence of editing operations producing different out-
comes. In all cases, inconsistent behavior was triggered by a rapid

succession of input events: presumably newer events were handled
before all dependencies had been enforced by previous event han-
dlers. Such behavior can lead to ignored input. In one representative
case, we typed “TKU” as the airport code and initiated a search.
The results were not for flights from Turku, Finland, but rather (in-
correctly) from Tampa, Florida. In this case, even though the K-
and U- keypress events occurred before the “initiate search” event,
they were handled after.

In a travel booking application the consequences of inconsis-
tencies are not that severe. If an error manifests, it is relatively
easy to detect and correct. Further, users learn to avoid errors by
adapting their use, e.g., to wait for the GUI to catch up. It is not
hard, however, to find more harmful problems in other widely used
applications. In a recent interaction with the Blackboard system
(www.blackboard.com, used by the majority of US Universities)
we noticed that entering students’ grades quickly leaves behind nu-
merous erroneous entries as keystrokes get ignored or assigned to
wrong entries. We argue that these examples are not anomalies, but
rather indicative of a larger problem—these applications have mil-
lions of users and they can be expected to have been developed with
ample resources and by competent programmers, yet they manifest
glaring errors in their most basic functionalities. The problem of
GUI inconsistencies is clearly systemic.

The event-driven programming model is at least partially to
blame: even after the programmer understands all dependencies in
a GUI, there is still the formidable task of ensuring that they are
correctly enforced in all possible interleavings of different event
handlers. To relieve the programmer from this task, we propose a
declarative approach to GUI programming where the data depen-
dencies are explicit and enforced by the system.

The central abstraction in our approach is what we call a prop-
erty model that holds data used by the GUI and manages dependen-
cies among the data using a hierarchical multi-way dataflow con-
straint system [3]. Property models are prior work of our research
group [13, 14], but as presented before, their operation was defined
with no regard to asynchronicity. This paper shows how property
models can orchestrate asynchronous responses to user events, and
guarantee both responsiveness and consistent results.

The key idea of our approach is to divide the work of the multi-
way constraint system into two phases. To react to changes in the
system’s variables, the first phase determines which dependencies
must be recalculated, and produces a plan for performing those
computations in a consistent order. The second phase performs
the computations and updates variables according to the plan. The
first phase executes synchronously. The second phase is allowed
to proceed asynchronously at its own pace, in any order permitted
by the plan—the results are consistent and, assuming no side-
effects, deterministic. After the first phase finishes, the GUI can
immediately accept new events. An upper limit for the execution
time of the first phase can be determined for each constraint system.
In practice the execution is often instantaneous [15], so the GUI is
guaranteed to always remain responsive.

One way to characterize the two phases is that the first phase
generates a reactive program that executes asynchronously in the
second phase. A reactive program is one which responds to changes
in variables by automatically recalculating values for functionally
dependent variables. Various reactive programming frameworks
have recently gained popularity in GUI programming (see, e.g. [2,
17, 20]). These frameworks build reactive programs from a static
description of data dependencies. Data dependencies in a GUI,
however, often change based on user interaction, which requires
programmers to define multiple reactive programs and coordinate
their use. By dynamically generating a reactive program from the
description of a constraint system, property models simplify GUI
programming while guaranteeing consistent results.

122

2. Background

A property model is an abstraction that automates many parts of
GUI implementation. It is not tied to any particular language or
GUI framework; rather, we assume it to be a library of the lan-
guage, call it the implementation language, in which the GUI is im-
plemented. Our proof-of-concept implementation [12] is targeted
for developing web applications in JavaScript. Here we give an
overview of property models and their role in GUI implementation.

2.1 Property Models

The traditional GUI programming model is organized around
events which occur during the lifetime of the application: the pro-
grammer writes and registers event-handling functions for call-
back on appropriate events. The difficulty of programming complex
GUIs with this model has long been recognized [13, 22], and it has
resulted in search for alternatives. We identify two trends emerging
from this search in which property models find their roots.

The first trend is the focus on the separation of concerns,
which has resulted in design patterns that divide GUI appli-
cations into clearly delineated components, including Model-
View-Controller [18], Presentation-Model [10], and Model-View-
ViewModel (MVVM) [11]. The most recent of these, the MVVM
pattern, divides the application into three parts. The Model is re-
sponsible for the “business” data and logic and is generally inde-
pendent of the UL. The View is responsible for the presentation
and translating user actions into events; it controls the behavior of
the individual elements (sometimes called widgets or controls) that
compose the GUI. The third component, the View-Model, is the
application’s model, or abstraction, of the View. It maintains the
data used by the GUI and provides logic defining how the interface
behaves as a whole. This division of responsibilities is well suited
for a property model, which neatly fills the role of a View-Model.

The data and logic of the View-Model are connected to the
widgets and events of the View through connections called data
bindings, or simply bindings. The purpose of bindings is to keep
the data of the View “in sync” with the data of the View-Model:
changes to one are automatically propagated to the other.

As a View-Model, the property model represents the current
state of the GUI. Bindings ensure the View always reflects the
current state of the GUI, and that changes to data of the View are
translated into changes in GUI state; we refer to these changes as
edits. Thus, the operation of a GUI based on a property model
proceeds as follows. User events are translated by bindings into
edits of the property model. The property model responds to the
edits by producing a new GUI state. The resulting GUI state is
translated back to the View by bindings.

The second trend which contributes to property models is the
replacing of event-handling code with dataflow constraints. A
dataflow constraint specifies how a variable’s value should be cal-
culated as a function of other variables, every time those other
variables change. Many GUI frameworks today provide constructs
for defining one-way dataflow constraints [17, 24, 25]. A system of
one-way dataflow constraints may be viewed as a reactive program.

Property models, too, use dataflow constraints to respond to ed-
its. Unlike in most GUI frameworks, property models’ constraints
can be multi-directional. They are maintained by a hierarchical
multi-way dataflow constraint system, summarized below; Zanden
provides a thorough discussion [32] of the kind of constraint sys-
tems we use with property models. A system of multi-way dataflow
constraints may be viewed as a generator for a reactive program.

2.1.1 Multi-way Dataflow Constraints

A multi-way dataflow constraint represents a relation over a set
of variables. When the relation holds, we say the constraint is
satisfied. The relation of the constraint is not defined explicitly, but

Class: B |

Volume: 025 m> Weight: 10 ke
Dimensions: 25 cm X 50 em X 200 cm
Distance: 1500 km

Price: $ 30.00 usp

Figure 2: A hypothetical form for determining shipping prices.
Note the large number of data dependencies.

rather implicitly through a set of constraint satisfaction methods,
or simply methods. Each method is a function that calculates new
values for some variables of the constraint using the remaining
variables as inputs. A method should enforce the constraint. That
is, after execution of the method, the constraint should be satisfied.
Of the property model’s variables, a method should only read its
inputs, and only write to its outputs, but a method does not need to
be referentially transparent.

Constraints can have any number of methods. The only require-
ments for a constraint are, first, that the output variables of one
method may not be a superset of the output variables of another,
and, second, that every method must use all of the constraint’s vari-
ables. A method violating the first requirement would be useless; it
would never be selected as part of any plan for solving the system
(see Section 2.1.2). The second requirement, known as method re-
striction [29], ensures that a plan is found in polynomial time [31].

As an example of constraints arising in GUIs, we consider the
GUI shown in Figure 2. In this hypothetical shipping application,
packages are classified by weight and volume into one of several
“package classes;” a package’s shipping price is a function of its
class and the shipping distance. Any field in the GUI may be edited;
other fields are updated accordingly. The GUI thus supports several
modes of interaction: the user may determine the price of shipping
a package a certain distance, or how far a package can be shipped
for a certain price, or even what shipping class may be shipped a
certain distance for a certain price. Furthermore, the user may enter
the package class directly, or choose to enter the weight and volume
of the package instead, or the weight and dimensions.

First, we consider the constraint between the volume v of a
package and its dimensions x, y, and z. The relation for this con-
straint is v = xyz. The constraint itself is defined by four methods,
x—v/yz, y—v/xz, z<v/xy, and vexyz, that each calculate a new
value for one variable from the remaining three. We label the func-
tions for these methods 4, B, ¢, and b, respectively.

Next, we consider the constraint amongst volume, weight w, and
class ¢ of a package. The weight and volume determine the class of
a package according to some function £, but we can also query for
a representative weight and volume for a given class according to
another function r (£ and r are not shown). The two methods of the
constraint are thus (w, v)«—E(c) and c—F(w, v).

The third constraint is between the package class, shipping
distance d, and shipping price p. However, this constraint is difficult
to define because many price/distance combinations do not exactly
match a shipping class. By adding the variable m to represent
the maximum allowed price, we can define the relation like so:
a package of class ¢ can be shipped a distance d for a price p,
no greater than m. This constraint can be implemented by three
methods. The first method, (¢, p)«<c(d, m), determines the largest
package class ¢ which can be shipped a distance d for a price no
greater than m, and the actual price p of the shipping. The second
method, (d, p)«—H(c, m) determines the greatest distance for which

123

a package of class ¢ can be shipped for a price no greater than
m, and the actual price p of the shipping. And the third method,
(m, p)—i(c, d) determines the price p of shipping a package of class
¢ a distance d; this price also becomes the maximum price .

We assume here that the binding of the Price text box reads
from p and writes to m. In this way, the user enters the maximum
price and sees the actual calculated price.

2.1.2 Hierarchical Multi-way Dataflow Constraint Systems

A multi-way dataflow constraint system is responsible for ensuring
that a collection of multi-way dataflow constraints are satisfied. It
does this by executing one method from each constraint, taking care
that once a method for a constraint has been executed, no variables
of that constraint are modified. This means executing the methods
in an order where no method outputs to a variable after it has been
used (either as input or output) by another method. We call any
execution order that satisfies this condition a valid execution order.

To satisfy all constraints in the constraint system, that is, to solve
the system, involves two steps. First, selecting the methods to be ex-
ecuted: one from each constraint, such that a valid execution order
exists. This set of methods is called the plan. Second, executing the
methods of the plan in a valid execution order.

Multi-way dataflow constraint systems can be underconstrained,;
multiple plans may exist for solving the system. Each plan, how-
ever, is unique in the set of variables not used as output by any
method. A ranking of variables thus gives a ranking for plans, so
that a unique “best” solution can be chosen. This is accomplished
in the following three steps.

First, we add a stay constraint for each variable in the system.
A stay constraint has one variable, and one method that outputs to
the variable. The method is a constant function with the variable’s
current value. Adding stay constraints makes the system overcon-
strained; no plan can enforce all stay constraints.

Second, we prioritize the stay constraints, making them totally
ordered. When a variable is edited, its stay constraint is promoted
to the highest priority. Thus, the hierarchy of stay constraints cor-
responds roughly to the order in which variables have been edited.!

Third, we use the hierarchy of constraints to select the plan
that enforces the highest priority constraints. More precisely, if we
characterize each plan by a sequence of the constraints it enforces,
in order from highest to lowest priority, then the constraint system
selects the plan which is lexicographically greatest. Because our
hierarchy reflects the editing order, the system will have a bias
towards preserving variables more recently edited by the user.

We define two editing operations for the constraint system. The
touch operation promotes a constraint to the highest priority, and
the set operation assigns a new value to a variable and also touches
the stay constraint for that variable. An edit of the system may be
defined as a sequence of one or more touch and set operations. The
constraint system is solved after each edit.

2.1.3 Dataflow Graphs

The key to managing asynchronous computations in a GUI is mak-
ing all dependency information explicit. Property models capture
this information in three directed graphs, defined in terms of the
constraint system’s variables, methods, and constraints. Here, we
discuss two of these; the Evaluation Graph [14] is not relevant to
this article. We let V represent the set of all variables and M the set
of all methods (every method of every constraint) in the system.

Constraint graph The constraint graph G = (N, E) is a bipartite
directed graph. The node set N is V U M. The edge set E contains
an edge (v,m) if variable v is an input of method m, and an edge

! There are other occasional circumstances in which a constraint’s priority
may be altered; they are beyond the scope of this paper.

Figure 3: A constraint graph for the shipping GUI. Square nodes
are variables, round nodes are methods. Dashed edges are methods’
inputs, solid their outputs.

1@ B

w

/ \ by \
7 \
7 \
/ \
Vi \

Figure 4: A solution graph based on the constraint graph of Fig-
ure 3. This solution graph shows plan {8, F, #}.

(m,v) if v is an output of m. The constraint graph represents every
potential dependency that exists in the constraint system.

The constraint graph for the shipping form example is shown
in Figure 3. This graph reflects the three constraints we defined
in Section 2.1.1; we have omitted the stay constraints. Constraints
are not explicit in this graph, but because of method restriction, we
may deduce them: two methods m and n are in the same constraint
iff they have the same graph neighborhood.

Solution graph The solution graph represents the dependencies
enforced by a particular plan. Specifically, given a constraint graph
G =(VUM,E) and a plan P C M, a solution graph is the node-
induced subgraph S = G[V UP]. By the definition of a plan, the
solution graph is acyclic. Valid execution orders of a plan are all
the topologically sorted sequences of the methods of P.

Figure 4 shows one possible solution graph for the shipping
form. The graph represents the plan P = {B,F H}; valid execution
orders are those in which r comes before #.

3. The Core Reactive Program

Generally, reactive programs are described by a single dataflow:
one sequence of computations to be repeated for every change in
input. Because dataflow in a property model may change, its reac-
tive program must be constructed dynamically. The program is con-
structed in layers. User events are translated to edits that the prop-
erty model reacts to by scheduling new computations to resolve
dependencies, resulting in a new layer of the reactive program.

At the heart of this construction process is a multi-way con-
straint system. This system responds to edits by computing a plan
for enforcing constraints as described in Section 2.1.2, but rather
than executing the plan’s methods immediately, it merely sched-
ules them. The planning and scheduling is an atomic step to ensure
consistent behavior; the methods themselves, however, may be exe-
cuted asynchronously. Execution of the reactive program proceeds
autonomously: methods execute as their inputs become available,
the View is updated to reflect new values, and older layers of the
reactive program that are no longer needed are reclaimed.

3.1 Variables

A variable of a property model represents a value that changes over
time. Variables’ values do not change continuously; they change

124

only in response to an edit (i.e., set or touch) of the property model:
either as a direct result of the edit, or as a result of solving the
constraint system in response to the edit. Once the system has been
solved, all variables remain constant until the next edit.

We represent variable values using a well-known asynchronous
programming construct: a promise [19]. A promise represents a
value that may not yet be available, but will be in the future. A
promise whose value is not yet available is pending. Once the value
becomes available, the promise is fulfilled. We may subscribe to a
promise by providing a callback function to be invoked with the
value of the promise once it is fulfilled. Subscribing to a fulfilled
promise results in the callback being invoked at the next oppor-
tunity. Promises may also be rejected to indicate that the process
intended to produce its value has failed and therefore the value will
never be available. We consider rejected promises in Section 4.2.

For each variable in the system, we define a sequence of
promises that we call the promise history. The promises of the
promise history correspond to every value given to the variable
over the life of the program, ordered by time. The last promise in
the promise history, known as the current promise, represents the
current value of the variable. To assign a new value, we add a new
promise to the end of the promise history. This promise may be
pending. Promises are only added to the history, never removed.

3.2 Methods

Methods define the dataflow between the promises of the reactive
program. In an asynchronous property model, methods are repre-
sented by functions whose inputs and outputs are promises. When
called by the constraint solver, these functions do no real work:
they merely subscribe to the input promises, construct the out-
put promises, and schedule the work which will fulfill the output
promises once input promises are fulfilled. Since the actual work
of a method will occur later, we say that when the constraint solver
executes the method’s function, it schedules the method.

It is through methods that the reactive program may achieve
asynchronous execution. Methods are free to offload work to, e.g.,
other threads or remote servers, thus freeing the current thread
to execute other methods or respond to user events. We make no
assumptions regarding the manner in which this “offloading” is
accomplished. In our JavaScript implementation a method may
schedule work on a different thread using web workers, on a remote
server using Ajax, or simply at a later point in the current thread
using a timer event. Which approach, if any, a method uses does
not affect any other part of the reactive program.

To aid the discussion below, we define the term method activa-
tion for a single execution of a method: what starts with scheduling
a method and ends when all output promises are resolved. Although
a method activation is a computation and does not have concrete
representation in our system, it is useful to think of it as an entity.
Like promises, activations are elements in our reactive programs,
each representing the execution of a certain method with certain
inputs which produced certain outputs. And, just as we associate
every variable with a promise history, so may we associate every
constraint with a sequence of activations, the activation history.
The activation history represents every activation of any method
of the constraint, ordered by the time they were scheduled.

3.3 Constructing the Reactive Program

As stated previously, the reactive program is generated incremen-
tally in response to edits to the property model. The very first edit,
and therefore the beginning of the reactive program, occurs as vari-
ables are initialized according to the property model’s specification.
Subsequent edits correspond to events in the life of the GUIL

The property model responds to each edit by generating a plan
for enforcing the constraints of the system, as described in Sec-

tion 2.1.2. It then schedules methods of the plan in a valid execution
order. Scheduling a method involves three steps: first, the current
promise for each input variable is retrieved; second, the method’s
function is invoked, passing in the retrieved promises as arguments;
and third, each promise returned by the function is added to the end
of the corresponding output variables’ promise history.

Some methods of the plan may not need to be scheduled, be-
cause executing them is known to have no effect. Given a method
m in constraint c, if the last activation in ¢’s activation history is an
activation of m, and if the inputs of m remain unchanged since that
activation, then we assume executing m would leave its outputs un-
changed. Thus, the scheduled methods are those not selected in and
those whose inputs have changed since the previous generation.

After all methods have been scheduled, the property model’s
response to an edit is complete; program control can return to
the main event-loop, while method execution proceeds asyn-
chronously. As input promises are fulfilled, method activations
perform their work and fulfill their output promises. In this way,
the constraints of the system will eventually be enforced.

The property model’s response to an edit, planning and schedul-
ing methods, is atomic—edit events are queued if planning and
scheduling for prior edits have not been completed. The worst-case
execution time for planning is quadratic in the number of variables,
methods, or constraints [32]. In practice planning is often instan-
taneous [15] and no planning is needed (the dataflow remains un-
changed) when an edit is to a variable whose stay constraint is al-
ready enforced, e.g., when repeatedly editing the same variable.

After the response, every variable which will receive a new
value because of the edit has been given a promise for that value.
Should some other code request the value of one of these variables,
it will receive the promise for the updated value, regardless of
whether or not its calculation has completed. Thus, the results of
any two equal sequences of edits will always be the same reactive
program, regardless of the differences in time intervals between the
edits in each sequence. If all methods of the constraint system are
referentially transparent, then so is the entire reactive program.

3.4 The Reactive Program Graph

As stated above, the life span of a property model consists of a se-
quence of edits, each followed by an update in which the constraint
system is solved. We refer to these successive updates as gener-
ations of the system. The solution graph describes dependencies
between variables for a single generation, but not the dependencies
that may arise between generations.

To capture the dependencies over the lifespan of the GUI, we
define the reactive program graph. The nodes of the graph consist
of promises and activations. The graph contains a directed edge
from every promise to every activation taking the promise as input,
as well as an edge from every activation to every promise it pro-
duced as output. Although the entire graph is simply a DAG, it is
illustrative to visualize it in layers stacked on top of each other: one
layer for every generation, containing all activations and promises
generated while solving the constraint system in that generation.

By way of example, Figure 5 shows the reactive program graph
of one possible sequence of edits in our shipping example. Promise
nodes are labeled by the variable to which the promise is assigned
and activation nodes by the methods that scheduled them. Each
label is sub-scripted with a generation. Generation 1 shows that
the constraint system was initially solved using the plan {c, £ G}.
This plan generates new promises for the variables z, v, w, p, and
¢, as indicated by the nodes sub-scripted with 1. Variables x, y, d,
and m retain their initial values given when the property model was
defined, as indicated by the nodes sub-scripted with 0.

Generation 2 is the result of editing variable w. This triggers an
update producing the plan {c, F, 1}, which gives new promises to vari-

125

Generation 1 Generation 2 Generation 3

Figure 5: A reactive program graph based on the shipping form
constraint system. Rectangles represent promises; circles represent
method activations. Nodes from the same generation are grouped
together in generations, which are ordered by time along the y-axis.

Figure 6: A “top-down” view of the reactive program graph from
Figure 5, showing the most recent activation for each constraint and
the most recent promise for each variable.

ables p, ¢, and m. Variable v did not receive a new promise; there-
fore, activation r, uses promise vy, which is the current promise for
v, as input. Similarly, activation 1, uses promise dy, which is the cur-
rent promise for d. Because the inputs to method c are unchanged,
it does not need to be scheduled in this generation.

Generation 3 is the result of editing variable v. This does not
alter the plan; however, all methods have at least one changed input,
and thus must be scheduled. Note that activations in this generation
use promises from both previous generations.

The reactive program graph provides a clear visualization of the
flow of data over the lifetime of the application. We imagine it in
three-dimensional space: each generation laid out in its own plane,
stacked on top of the previous generation. Arranging the nodes so
that promises for the same variable are directly over one another
reveals the promise history for each variable as a vertical column.
Arranging method activations for the same constraint similarly re-
veals the activation history for each constraint. Viewing the graph in
this arrangement from above, we see only the most recent promise
for each variable and the most recent activation for each constraint.
Such a “top-down” view of the graph found in Figure 5 may be seen
in Figure 6. Once all activations are complete and all promises ful-
filled, then this is the view the GUI will make visible to the user.

3.5 The Resulting GUI

As mentioned in Section 2.1, variables of the property model are
connected to the view through data bindings. A variable publishes
its value every time it changes; a binding subscribes to these no-

Class: 3. c 3

Volume: 0.8m® Weight: 20 kg
Dimensions: 25 cm % 50 em X 640 cm
Distance: 1500 km

Price: $3. 52.50us

Figure 7: The shipping form after Generation 3 of Figure 5, while
activation r; is still running.

tifications and updates the View when they occur. In this way the
results of the property model are made visible in the GUI.

A variable can obtain a new value when a promise in its promise
history is fulfilled. Often it is the current promise, but in general
the history may contain several pending promises which can be
fulfilled in any order. The view should reflect the most current value
of a variable, which is the value of the last fulfilled promise in the
variable’s promise history. Therefore, when a promise is fulfilled,
the variable will publish the promise’s value as its own value unless
a later promise in its promise history has already been fulfilled.

Consider again the “top-down” view of the reactive program
graph shown in Figure 6. We may imagine that promises which
are pending are transparent, so that for each variable we see the
topmost fulfilled promise. This is the view reflected in the GUI.

We call a variable pending or fulfilled depending on whether its
current promise is pending or fulfilled, respectively. It is helpful to
the user to know whether a View shows a pending value that might
change, or a value that will not change until an edit occurs. To this
end, for each variable we define a property named pending which
is true when the variable is pending and false when it is fulfilled.
This property publishes its value in the same way a variable does,
and it is thus suitable for binding to the View.

Figure 7 shows the shipping form GUI as it appears just after
Generation 3 in Figure 5: the activation 1 has completed, F; is
running, and ¢; is scheduled. The promises c3, ps, and m; are
pending, and therefore the drop-down list for the shipping class
reflects the value of ¢, and the text box for price the value of p;.
These elements will be updated when p3 and mj are fulfilled.

To give a different appearance to GUI elements whose corre-
sponding variables are pending, we used a binding that updates the
element’s CSS class based on the variable’s pending property; we
then used a CSS stylesheet to attach a different background color
and add a “spinning” graphic to elements with the appropriate class.

Note the work required by the programmer to get this advanced
GUI behavior: define the view, the constraint system, and the data
bindings. From these specifications, shown in part in Section 5,
a property model derives a GUI implementation which schedules
asynchronous computations, remains responsive while the compu-
tations are running, and gives notifications of their progress and
results. Not only that, but the implementation guarantees that any
sequence of edits will always produce consistent results, no matter
how quickly (or slowly) those edits occur.

3.6 Detecting Unreachable Program Elements

Up to this point we have described a property model as if it stored
every promise of a promise history and every activation of a ac-
tivation history. Here we consider when elements of the reactive
program may be released and their resources collected.

We define a program element, a promise or an activation, to be
irrelevant when it can no longer affect the GUI. The methods of a
property model do not directly affect the GUI,; their only external

126

effect is to fulfill output promises. Fulfilled promises directly affect
the GUI when bindings propagate their values to the view, which is
when all more recent promises in the same promise history are still
pending. We call such promises visible.

Just because a promise is not visible does not mean it is irrele-
vant; other promises that are visible may depend on its value. We
can use the reactive program graph to trace all the dependencies
of a program element. This leads us to the following definition: a
program element is irrelevant if and only if there are no paths in the
reactive program graph from that element to a visible promise.

Irrelevant promises may be discarded. Activations which are
irrelevant may be unscheduled so that they will no longer respond
to the fulfillment of their input promises, and then discarded. Thus,
while new program elements are added to the “top” of the reactive
program graph in response to edits, old program elements may be
removed from the “bottom” of (or anywhere in) the graph as they
become irrelevant. Memory usage can be expected to stay constant.

Note that even though we describe the identification of irrele-
vant program elements as a graph traversal task, no graph search is
necessary. Our implementation uses a reference counting scheme
in which promises keep track of their subscribers; when a promise
looses all subscribers it becomes irrelevant and may be discarded.

4. Extending the Reactive Program

We have added several features to the core reactive program defined
in Section 3. Here we describe two of them: accessing prior values
in the reactive program and handling failure in method activation.

4.1 Accessing Prior Values

Each edit of a property model engenders a new generation of the
reactive program in which method activations compute new values
for some variables. While creating a new generation, we make the
following distinction: the prior value of a variable is its value before
the new generation; the current value is its value after the new
generation. The reactive program graph gives a clear interpretation
for current and prior values. Generally, a method activation is
passed the current value of each of its inputs. In some methods,
prior values of inputs are needed too, e.g., to calculate the difference
between the previous and current generation. The prior values of
output variables can be useful too.

Methods can specify whether they want the current or prior
value of each input variable, and they will be passed the appro-
priate promise when the method is scheduled. The current value is
always represented by the current promise (the last element of the
promise history); the prior value by either the promise immediately
below the current promise, if the variable is written to in the new
generation, or the current promise, if it is not. In the latter case, the
current and prior values are represented by the same promise.

As an example of a constraint accessing a