
Helping Programmers Help Users

John Freeman
Texas A&M University
jfreeman@cse.tamu.edu

Jaakko Järvi
Texas A&M University
jarvi@cse.tamu.edu

Wonseok Kim
Texas A&M University
guruwons@cse.tamu.edu

Mat Marcus
Canyonlands Software Design

mmarcus@emarcus.org

Sean Parent
Adobe Systems, Inc.
sparent@adobe.com

Abstract
User interfaces exhibit a wide range of features that are designed to
assist users. Interaction with one widget may trigger value changes,
disabling, or other behaviors in other widgets. Such automatic be-
havior may be confusing or disruptive to users. Research literature
on user interfaces offers a number of solutions, including interface
features for explaining or controlling these behaviors. To help pro-
grammers help users, the implementation costs of these features
need to be much lower. Ideally, they could be generated for “free.”
This paper shows how several help and control mechanisms can
be implemented as algorithms and reused across interfaces, mak-
ing the cost of their adoption negligible. Specifically, we describe
generic help mechanisms for visualizing data flow and explaining
command deactivation, and a mechanism for controlling the flow of
data. A reusable implementation of these features is enabled by our
property model framework, where the data manipulated through a
user interface is modeled as a constraint system.

Categories and Subject Descriptors H.2.2 [Software Engineer-
ing]: Design Tools and Techniques—user interfaces

General Terms Algorithms

Keywords user interfaces, software reuse, constraint systems,
software architecture

1. Introduction
The dull, run-of-the-mill user interfaces—dialogs, forms, and
such—do not get much attention from the software research com-
munity, but they collectively require a lot of attention from the
programmer community. User interfaces abound, and they are la-
borious to develop and difficult to get correct. As an attempt to
reduce the cost of constructing user interfaces, we have introduced
property models, a declarative approach to programming user in-
terfaces [8, 9]. The long term goal of this work is to reach a point
where most (maybe all) of the functionality that we have come to
expect from a high quality user interface would come from reusable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE’11, October 22–23, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-0689-8/11/10. . . $10.00

algorithms or components in a software library, parametrized by a
specification of the data manipulated by the user interface. In par-
ticular, we have described reusable implementations for the prop-
agation of values between user interface elements, the enablement
and disablement of user interface widgets, and the activation and
deactivation of widgets that launch commands.

This paper describes our work to direct these advances to the
improvement of user interfaces. One purpose of a user interface is
to provide the user with an easily interpreted view of a conceptual
model for the internal states of the application and the interface
itself. To the extent that the interface fails to do this, there exists
a gulf of evaluation [7]. The gulf of evaluation exacerbates the
cognitive effort required to understand and use an application, and
can lead to user frustration.

This paper shows that with the power of components, genera-
tivity, and reuse we can go beyond merely implementing existing
behavior more economically. If a user interface behavior can be
successfully packaged into a reusable component, then we should
explore more functionality for assisting users and closing the gulf
of evaluation. We should aim for more consistent user interfaces
with less surprising behavior, more explanations of why a user in-
terface behaves the way it does, and more abilities to change the
behavior of a user interface “on the fly” to better serve users’ goals.
In sum, we should aim for more features that help users in their
interactions with an interface.

This paper describes several generic realizations of help and
convenience features that could be provided as standard features
of dialogs and forms. In particular, we focus on (1) visualizing
how data flows in a user interface, (2) providing help messages
for commands that are deactivated, and (3) providing the user with
means to control the direction of the flow of data. We emphasize
that the main contributions of the paper are the algorithms and the
software architecture that enable implementing these features in a
reusable manner, applicable to a large class of user interfaces with
negligible programming effort. The realizations of these algorithms
build on the property models approach, in which the data that a
user interface manipulates and the dependencies within this data are
modeled explicitly as a constraint system. Reusable user interface
algorithms are thus algorithms that inspect and manipulate this
constraint system.

We are at an early stage in our effort. To not overstate our
contribution, we note that we have not conducted user studies, and
we have not applied the proposed tools and algorithms to a large
collection of user interfaces drawn from existing software. The
computer-human interaction (CHI) research community, however,
has devised many help and support features for user interfaces and

177

Figure 1. A dialog for reserving a hotel room.

argued for their usefulness [5, 13, 14]. We believe in these results,
and wish to employ the science of software libraries, components,
and generative programming to make implementing such features
affordable, so that they become ubiquitous, liberated from their
lonely existence in a handful of research systems.

We are working on a library that implements the property mod-
els approach in JavaScript, so that it can be run entirely within a
web browser. The library is under active development, and its core
is already publicly available [4].

2. Background
In the property models approach, the behavior of a user interface is
completely derived from three specifications: the model of the data
manipulated through the user interface, the visual elements and
layout, and the connections between the visual elements and the
data. We call these three specifications the property model, layout,
and bindings, respectively:

1. The property model is essentially a constraint system: a set of
variables and a set of relations that should hold true for those
variables. We provide a declarative domain-specific language
for specifying property models.

2. A layout is just that: a set of widgets provided by a graphical
user interface (GUI) library and their positions. We provide a
simple declarative language for specifying layouts, but a layout
could just as well be created through calls to a GUI library API
or by using a GUI design tool.

3. A binding connects one or more widgets with one or more
variables in the property model, and can be one of two kinds:
a view binding, where a widget is set to display the current
value of a variable, or a control binding, where user interactions
with a widget are translated to requests to change the value
of a variable. Often a widget is bound to a variable via both
types of bindings; this would be the case, for example, when
a textbox that a user can edit is bound to a variable. In our
current system, the specifications of bindings are embedded in
the layout specification.

To demonstrate how these specifications give rise to a user
interface, consider a simple dialog for reserving a hotel room, like
the one that appears in Figure 1. The property model for this dialog
is shown in Figure 2 and the layout and bindings in Figure 3. The
core of these specification languages is described in [9], and we
elaborate on extensions in the rest of the paper.

Launching a user interface merely requires passing the above
three specifications to a function provided by the property models
library, with a call that, omitting some details, looks roughly like
this:

open dialog(model, initial values, layout);

model {
interface: {

checkin : today();
nights: 1;
checkout;
}
logic: {

relate {
checkout <== add days(checkin, nights);
checkin <== remove days(checkout, nights);
nights <== day difference(checkin, checkout);
}
}
invariant: {

@description(”Check−in date should not be in the past.”)
not in the past <== check checkin(checkin);

@description(”The Check−in date must come before
the Check−out date.”)

at least one night <== nights > 0;
}
output: {

result <== { checkin: checkin, checkout: checkout };
}
}

Figure 2. The model specification for the dialog in Figure 1. The
expressions have access to JavaScript functions available in the run-
time environment, e.g., those for manipulating dates.

layout {
text (label : ”Check−in”, value : checkin);
text (label : ”Check−out”, value : checkout);
text (label : ”Nights”, value : nights);

errors ();

commandButton (label : ”Book Now”, value : result);
}

Figure 3. The layout and bindings specifications for the dialog in
Figure 1.

Initial values in our system are dictionaries of labeled values, and
they are used to initialize the variables in the property model.

We draw attention to the complete absence of event handling
logic. All of it is delegated to algorithms in a software library. We
have explained how we can generically support value propagation,
script recording and playback, widget enablement and disablement,
and command activation features [8, 9]. Our prior publications also
contain a more introductory explanation of the property models
approach. Here, we briefly summarize the approach, so that we
can explain how the help features proposed in this paper can be
implemented as reusable algorithms.

2.1 Property Model Constraint System
We represent property models as hierarchical multi-way dataflow
constraint systems [16]. As mentioned above, a constraint system
consists of variables and constraints. Abstractly, constraints repre-
sent relations among subsets of those variables; solving a constraint
system means finding a valuation for the system’s variables so that
all relations in the system are satisfied. A hierarchical constraint
system is one where constraints may have different strengths. If
not all constraints can be satisfied, partial solutions to hierarchical
constraint systems prefer to ignore weaker constraints in favor of
enforcing stronger ones.

178

Formally, a multi-way dataflow constraint system is a tuple
〈V,C〉, where V is a set of variables and C is a set of constraints.
Each constraint in C is a tuple 〈R, r,MC〉, where R ⊆ V , r is
some n-ary relation among variables in R (n = |R|), and MC is a
set of constraint satisfaction methods, or just methods. If the values
of variables in R satisfy r, we say that the constraint is satisfied.
Each method in MC computes values for some subset of R using
another subset of R as inputs. In the constraint systems of property
models, all variables of R appear as an input or output of each
method in MC , and no two methods in MC may share the same set
of outputs. The programmer must ensure that executing any method
of MC will enforce the constraint, that is, satisfy the relation r.

The constraint satisfaction problem for a constraint system S =
〈V,C〉 is to find a valuation of the variables in V such that each
constraint in C is satisfied. One such valuation is obtained if exactly
one method from each constraint in C is executed, such that no
variable is assigned a value by two methods; and the methods are
executed in an order where no variable is assigned a value after
another method has already used it as an input. A way to obtain
such a valuation is thus characterized by a sequence of methods,
often called a plan.

A multi-way dataflow constraint system can be represented as
an oriented, bipartite graph Gc = 〈V + M,E〉. The vertex sets
V and M correspond, respectively, to the variables and methods of
the system, and the edges in E connect each method to its input
and output variables: if v, u ∈ V and m ∈ M , then edge (v,m)
indicates that the variable v is an input of the method m, and (m,u)
that m outputs to the variable u. We call the graph of a constraint
system formed this way the constraint graph.

A plan can also be represented as a graph. Let Gc = 〈V +
M,E〉 be a constraint graph and M ′ ⊆ M the set of methods in
the plan. The solution graph of the plan is Gs = Gc[V +M ′], the
vertex-induced subgraph of Gc. A solution graph is acyclic and the
in-degree of all variable nodes is at most one. A plan corresponds
to a topological ordering of the method nodes of a solution graph.

A third graph that is relevant for our purposes is the evaluation
graph. It is obtained by observing which of its input variables a
method needs in order to compute its result—methods use “by-
name” parameter passing. If in computing the value of the method
m, the value of one of its inputs v is needed, then the edge (v,m)
of the solution graph is said to be relevant. Otherwise the edge is
not relevant. Evaluating every method in a solution graph induces
a partition of edges into relevant and not relevant. Assuming a
solution graph Gs = 〈V +M,EV +EM 〉, where EV are the edges
whose target vertex is in V , and EM the edges whose target vertex
is in M , the evaluation graph Ge is the subgraph of Gs induced by
the edges EV + Er where Er ⊆ EM are the relevant edges. That
is, Ge = 〈V +M,EV + Er〉.

The algorithm that guides how a user interface responds to user
interaction is essentially that of maintaining the property model in
a state where all constraints are satisfied. When a user changes the
value of a user interface element, such as a textbox, and that el-
ement is bound to one of a property model’s variables, a request
to change the value of the variable is sent to the model. When the
variable’s value changes, some constraints may be no longer satis-
fied. The system is brought back to a satisfied state by computing
a new solution graph, followed by evaluating the constraint satis-
faction methods in this graph in a topological order. New values of
changed variables are reflected back to the user interface elements
bound to those variables.

It is usually the case that the constraint system of a property
model is underconstrained. That is, many different solution graphs
exist, and each solution graph corresponds to a different direction
of flowing data in a user interface. For example, in the dialog for
selecting dates for a hotel stay, data could flow from the start date

and end date fields to the field showing the number of nights; or it
could flow from the start date and the number of nights fields to the
field showing the end date.

To select among the many possible plans, we assign a “priority”
to each variable, based on the order of updates to the property
model’s variables. Every time a variable is updated by a client,
it is assigned the highest priority among all variables. Priorities
are totally ordered. The flow that tends to follow the principle of
least surprise for the user is the one that preserves as many of the
values of the variables that have been updated most recently, that is,
variables with high priorities. We can express an ordering between
plans precisely in terms of solution graphs: a solution graph A is
better than B if, of those variables that are sources1 in exactly one
of the graphs, the variable with the highest priority is a source in A.
This definition induces a total ordering on solution graphs; the best
solution graph according to this order is the one selected.

To compute the solution graph, we map the priorities of the vari-
ables to stay constraints in the underlying constraint system. When
enforced, a stay constraint keeps a variable’s value unchanged. We
give these constraints strengths that respect the priority order of the
variables they were derived from. With this mapping, we can ap-
ply Zanden’s Quickplan algorithm [16] to produce a new solution
graph.

The three graphs described above—the constraint graph, solu-
tion graph, and evaluation graph—have the following interpreta-
tions: the constraint graph represents the dependencies that could
be in effect at some point during interaction with a user interface;
the solution graph represents the dependencies that could be in ef-
fect with the current order of updates to the variables of a property
model, for some values of those variables; and the evaluation graph
represents the dependencies that are currently in effect for the cur-
rent order of updates to the variables, for their current values.

Besides the algorithm outlined above for propagating values
within user interfaces, other algorithms guide aspects of a user
interface’s functionality in our system. These algorithms enable and
disable widgets and activate and deactivate commands. All these
functionalities are based on queries to the three graphs described
above. The information that enables the reusable implementations
of the help functionalities described in this paper are similarly
derived from those three graphs.

3. Dataflow Visualization
There are often dependencies among different values displayed in
a user interface. When a value changes, the interface may try to sat-
isfy certain relations in order to preserve the consistency of the data
that is displayed. It will react to user edits by changing the values of
other widgets, yielding a dataflow. In many cases, values may need
to be propagated in different, even opposite directions, depending
on what has changed and when. In determining the dataflow, user
interfaces should strive for complying with the “principle of least
surprise.” As explained in Section 2, this means, for example, that
the values that the user just finished editing should not be overwrit-
ten.

When an edit of one value triggers changes in other values, it
can be unclear to the user which values are changing and for what
reasons: changes may happen too quickly or inconspicuously to
notice; it may appear that they are all directly related to the edited
value, which could be misleading; or values may change in ways
unexpected by the user. Each of these complications contributes to
a gulf of evaluation with respect to value propagation.

Consider a simple dialog for image scaling, such as what
appears in Figure 4. It provides two ways of editing the im-
age dimensions—either absolutely, in pixels, or relatively, in

1 In graph terminology, a vertex with no incoming edges is called a source.

179

Figure 4. A dialog for resizing an image. The arrow is a visualiza-
tion of a functional dependency in the dialog’s property model.

percentages—with the option to preserve the ratio between the
image’s height and width. The values of all four textboxes and the
checkbox are tied together in a complex, multi-way relationship.
If the user edits one of the numeric values, the other three could
change. To understand this behavior, a user will need to know
which values currently affect which others.

In the context of property models, this information is contained
in the evaluation graph: a variable’s value is affected by its an-
cestors and affects its descendants. What is needed is an effective
means—such as visualization—of communicating this information
to the user.

In our implementation, we animated the flow of data among
values in the model. For each method in the evaluation graph, an
arrow is drawn connecting the widgets bound to its inputs and
outputs. (Consequently, this means the arrow might have multiple
heads or multiple tails or both.) To prevent confusion, an arrow is
drawn only if the outputs had changed as a result of the most recent
evaluation. These arrows are displayed, one at a time, according to
the order of the methods’ evaluation. To avoid interrupting casual
use of the interface, the dataflow illustration is triggered only upon
the explicit request of the user, indicated by clicking a button.

Now, the animation makes the relationships behind the inter-
face explicit and clear, and thus fosters understanding in the user.
Further, this behavior works for all interfaces built with property
models for no additional cost.

We realize that our first attempt is rudimentary, and after seeing
it in action, we identified some potential improvements. In one way,
the animation seemed to play too quickly. The time an individual
relationship was displayed seemed too short for digesting the infor-
mation the visualization was trying to convey. In another way, the
animation seemed to play too slowly. If we wanted to focus on one
particular relationship, which was often the case, then we would
have to wait for the animation to get to that point, and then wait for
it to complete before we could see it again. The animation could
have conformed better to how we wanted to consume the relation-

Figure 5. A dialog for reserving a hotel room, with a disabled
command widget and accompanying help text.

ship information—typically we were interested in just one or two
relationships out of the whole graph.

Consequently, a more desirable alternative to animation may be
to allow the user to glance at individual relationships separately and
at their own pace. Contextual information for a field would include
arrows connecting it to the the fields from which it was computed,
and to the fields computed from it. This contextual information
could be displayed, say, along with existing menus upon right-
clicking a field. By displaying the network of dependencies in
localized chunks, we avoid presenting too much information at
once and cluttering the interface.

Finally, a more sophisticated layout algorithm could be used to
produce more visually appealing arrows.

In the bigger picture, however, the prototype implementation
suffices to demonstrate that our framework enables a data flow vi-
sualization to be described and implemented in a generic, reusable
manner, and thus make it worth the while to invest more on im-
proving the visualization, to eventually benefit a large class of user
interfaces.

4. Explaining Command Availability
Whenever a user interface command is unavailable in the current
context, most rich user interfaces will prohibit its execution by de-
activating the corresponding command widget that invokes it. Vi-
sually, deactivation can take several forms, including “graying out”
or hiding the widget. Human interface guidelines for several pop-
ular platforms recommend this behavior and alternatively describe
widgets that are not enabled as “dimmed” [1], “disabled” [3, 11],
or “insensitive” [6].

We have previously published an algorithm for property models
that can automatically determine when a command widget should
be deactivated according to the above guidelines [9]. A command
becomes unavailable only in certain contexts, and to describe those
contexts is to describe preconditions for the command. In a prop-
erty model, the preconditions for a command are defined by the
programmer with the help of invariants. Each of these special vari-
ables hold the result of a boolean expression that is true when the
precondition is satisfied and false otherwise. Returning to our ear-
lier example, a command that reserves a hotel room may require a
positive number of nights, as in Figure 5. This precondition is ex-
pressed in the at least one night invariant in the property model
in Figure 2.

Continuing, a command widget launches some command in the
program, and takes the command’s parameters from the variable
to which it is bound. In our example dialog, the specification in

180

Figure 3 binds the Book Now widget to the result variable. The
value of this variable is derived from the two variables checkin and
checkout, as can be seen from the model specification in Figure 2.

When an invariant variable evaluates to false, i.e., when a pre-
condition fails, then the variables that contributed to that violation
are marked, or “blamed,” for being responsible. If any blamed vari-
able is also used to evaluate a command’s parameters, i.e., if in
the evaluation graph a failed precondition and a command share a
common dependency, then the command is deactivated.

From the perspective of the user, a couple of issues surround
the behavior described above. First, a user may not understand why
a particular command widget is deactivated. As stated above, pro-
grammers can express these reasons through invariants in the prop-
erty model. However, since they appear only in the user interface
code, the user may not know what they are and, consequently, have
a limited understanding why a command widget is deactivated. A
recent experience of one of the authors illustrates this case. In try-
ing to change a password to a web system, an error message kept
repeating simply that the new password entered did not satisfy the
requirements of a valid password. The requirements were mostly
revealed through trial and error. We can reasonably expect that a
large portion of the users of that system will not succeed in the
same task on the first, second, or even third try.

To alleviate the above problem, we can automatically generate
help text that describes the reasons why a command widget is
deactivated. If the programmer adds a natural language description
of the precondition to the invariant variable, then we can present
it to the user as an explanation for a deactivated command widget.
Examples of such annotations are the @description strings in the
property model specification of Figure 2. The explanation could be
included with other contextual information, such as the dataflow
visualization described in Section 3.

The second problem is that even after reading an explanation, a
user may not know the actions necessary to re-activate a command
widget. Using the property model, we can find which variables are
responsible (to varying degrees) for the failed precondition. We can
then direct the user to the widgets bound to those variables and
expect that they can deduce how to interact with them to satisfy
the precondition. In our hotel reservation example from Figure 5,
we inform the user that changing any of the check-in, check-out,
or nights values may be able to resolve the error. To determine
the responsible variables, we look at the invariant representing the
failed precondition and take its ancestors in the evaluation graph,
i.e., the variables that contributed to its false value. We find the
interactive widgets that are bound to those variables, then reference
their labels in the help text.

A user interface is not limited to just this implementation, how-
ever. To varying degrees, other variables could be considered re-
sponsible. We chose to look at only variables that reach the invari-
ant in the evaluation graph, but this might not include all variables
that can reach it in the constraint graph. In some cases, such vari-
ables could be edited to affect the invariant’s value, providing an
alternative means to satisfy the precondition. Additionally, instead
of just listing the interesting widgets in the explanation, we could
highlight them when the user hovers over each name. This should
resolve situations where it may not be clear to the user which wid-
gets are being referenced.

The dependencies exhibited in the hotel dialog are simple, and
a user likely does not have trouble finding ways to satisfy the com-
mand’s preconditions. We use that example to explain the mecha-
nism of generating help texts, rather than to advocate its usefulness.
In larger dialogs and forms, dependencies easily get more compli-
cated, and thus accurate help text are of greater importance. Fig-
ure 6 shows a (still relatively simple) survey form with more de-
pendencies, implemented with our system. Many preconditions are

Figure 6. A user survey form demonstrating preconditions along-
side more complex value relationships.

violated, and the generated help messages accurately identify the
variables responsible for each violation.

It is important to note that the generation of help text is com-
pletely orthogonal to and works in harmony with the dataflow vi-
sualization described in Section 3. After marking values that are
violating the precondition, the user can see the network of relation-
ships among them to better determine a root cause.

5. Pinning
As is evident by now, a rich user interface may automatically,
without consent from the user, change values in order to enforce
relationships among them. Even though reasonable heuristics are
applied, the behavior may be unexpected to the user. In our running
example, the hotel reservation dialog from Figure 1, consider this
sequence of user actions:

1. The user enters a check-in date.

2. The user enters a check-out date.

3. The user realizes he did not mean to stay for the calculated
number of nights, so he changes the number of nights value.

The user’s expectations may or may not agree with the heuristic
that our system follows. If the user is editing the nights in order to
correct his last edit to the check-out date, then he might expect the
check-out date to change accordingly. However, since the check-
out date was edited more recently, our system assumes that the user
would rather preserve that value, so it changes the oldest value: the
check-in date.

In a more complicated interface with more relationships, we can
imagine that such a turn counter to user’s expectations could lead
to the undoing of a larger portion of the user’s work. We should
note that no rule can be “correct” in all cases, as in some cases
there is no single possible unsurprising dataflow. The expectation
of the user interface’s most natural behavior may, for different users
(or even for the same user) in identical situations, be different. A

181

Figure 7. A dialog for reserving a hotel room, with a pinned value.

user interface should thus provide means to the user to control the
preferred dataflow.

We provide a feature that allows the user to “protect,” or pin,
certain values as he moves along. Pinning does not prevent the user
from further editing the value. It simply guarantees that the system
will not automatically change the pinned value as a reaction to the
user changing some other value. Figure 7 shows how pinning is
offered in our system for the familiar hotel reservation example.

Implementing pinning translates naturally to property models.
As we explained in Section 2, a stay constraint keeps a variable’s
value unchanged. The desired effect is thus attained if the stay
constraint of the pinned variable is promoted to the same strength
as that of the programmer-defined constraints. This guarantees that
the stay constraint will be enforced in all solution graphs, and thus
the pinned variable is not overwritten by any method.

Pinning is not without complications, though. Pinning a variable
expands the set of constraints that must be enforced in each plan
by adding the variable’s stay constraint. If enough variables are
pinned, the property model could become overconstrained, leaving
it unsolvable. To prevent this, we can disable the pinning option
for widgets bound to variables that, if pinned, would result in
an overconstrained system. Identifying a variable as “pinnable”
is straightforward: a single run of the constraint solver suffices to
determine if the system can still be solved after a particular variable
is pinned. Furthermore, after pinning a variable, it may be that some
other variables are derived in all possible plans. Any user edits
to such values will be overwritten. To prevent confusion, widgets
bound to such variables should be disabled. We can identify these
variables as well: after removing from constraints any methods that
write to pinned variables, any variables written by a method in a
constraint with no other methods will be derived in all solutions.

6. Role of Property Models in Implementation
We emphasize that the visual presentations of the three features
discussed above are divorced from their underlying implementa-
tions. User interface developers are free to integrate them with ex-
isting interfaces however they see fit. For example, instead of us-
ing checkboxes labeled “pin”, which may suggest to some users
that pinning will “lock in” a value, protecting it even from user ed-
its, a more user-friendly presentation could be to use a star-shaped
checkbox, suggesting that pinning simply indicates high-priority,
“favorite” values. Developers can experiment to find which visu-
alization methods work best. Our intent is merely to provide the
non-trivial framework to support them.

7. Related work
Features related to the three help mechanisms we have presented
have been incorporated into various systems developed by the CHI
community. We discuss a few representatives below. We are not
aware of other work, however, where the main focus is on a generic

mechanism that supports implementing a large selection of such
features alongside each other.

UIDE [5, 14] and HUMANOID [12] use preconditions on com-
mands to disable widgets and to generate helpful explanations.
UIDE also uses postconditions to explain how to enable a com-
mand widget [2, 13, 15]. The authors acknowledge that their sys-
tem is not prepared to handle situations with complex, multi-way
dependencies among actions and widgets; such dependencies are
supported in an interface built on property models. Unlike UIDE,
our generated help text does not attempt to provide a precise se-
quence of interactions for re-activating a command widget (in some
cases, there may be many sequences to choose from), and we have
not investigated its (in)feasibility. Further, we try not to burden the
programmer with specifying postconditions for user interactions.
We believe that the information available in a property model is
enough to provide sufficient help.

The Heracles system supported pinning of its controls [10].
In Heracles, not all constraints are enforced after each user edit,
and multi-way constraints are not supported. Thus, some of the
issues facing pinning in property models are avoided. Heracles also
opts to pin a variable automatically upon user edit, whereas we
pin a variable upon explicit request only. The authors of Heracles,
like us, cite potentially unclear dataflow and overwritten values as
motivations for pinning.

8. Conclusion
This paper explains how three different user interface features,
aimed at improving the user’s experience when interacting with a
computer, can be implemented generically—to provide any or all
of the features within some user interface requires no code specific
to the user interface. The adoption cost of these features is thus very
small.

To emphasize the importance of the low cost of adoption, we
concentrate on one of the three features. In Section 4 we describe
the automatic generation of helpful explanations for why a com-
mand widget in a user interface is deactivated. We gave an example
where a user had to, through trial and error, “fight” a system in ac-
complishing a password change task that would have been trivial
had the system given adequate error diagnostics. The account hold-
ers of that in-house system are counted in thousands, and each has
to go through the procedure periodically. Hence, collectively the
time wasted by the users likely far surpasses the time it would have
taken for the developer to program that help feature. Still the eco-
nomics of programming did not make it worthwhile to do so. That
particular help feature likely was not key during specifying the re-
quirements or defining the deliverables, and at development time,
the programmer(s) may have had other feature requests with higher
priorities. On the other hand, we as users shrug off small frustra-
tions with computer systems, once we find a way around them, and
do not think twice about it. It is of no user’s interest to spend much
time to find out how one could get a small defect fixed or missing
feature added.

We want to cast blame on neither the user nor the programmer—
the incentives to take action to rectify the state of affairs is too small
for both. The property models approach scales the incentives to
cover a significantly larger class of user interfaces.

References
[1] Apple. Apple human interface guidelines. http://developer.

apple.com/library/mac/documentation/UserExperience/
Conceptual/AppleHIGuidelines/index.html, May 2011.

[2] J. J. de Graaff, P. Sukaviriya, and C. van der Mast. Automatic genera-
tion of context-sensitive textual help. Technical Report GIT-GVU-93-
11, Georgia Institute of Technology, Apr. 1993.

182

[3] Eclipse. User interface guidelines. http://wiki.eclipse.org/
User_Interface_Guidelines, May 2011.

[4] J. Freeman, W. Kim, and J. Järvi. Hotdrink. URL http://code.
google.com/p/hotdrink/.

[5] D. F. Gieskens and J. D. Foley. Controlling user interface objects
through pre- and postconditions. In Proceedings of the SIGCHI con-
ference on Human factors in computing systems, CHI ’92, pages 189–
194, New York, NY, USA, 1992. ACM. ISBN 0-89791-513-5.

[6] GNOME. GNOME human interface guidelines. http://
developer.gnome.org/hig-book/stable/, May 2011.

[7] E. L. Hutchins, J. D. Hollan, and D. A. Norman. Direct manipula-
tion interfaces. Human-Computer Interaction, 1:311–338, December
1985. ISSN 0737-0024.

[8] J. Järvi, M. Marcus, S. Parent, J. Freeman, and J. N. Smith. Prop-
erty models: from incidental algorithms to reusable components. In
Proceedings of the 7th international conference on Generative pro-
gramming and component engineering, GPCE ’08, pages 89–98, New
York, NY, USA, 2008. ACM. ISBN 978-1-60558-267-2.

[9] J. Järvi, M. Marcus, S. Parent, J. Freeman, and J. N. Smith. Algo-
rithms for user interfaces. In Proceedings of the eighth international
conference on Generative programming and component engineering,
GPCE ’09, pages 147–156, New York, NY, USA, 2009. ACM. ISBN
978-1-60558-494-2.

[10] C. A. Knoblock, S. Minton, J. L. Ambite, M. Muslea, J. Oh, and
M. Frank. Mixed-initiative, multi-source information assistants. In
Proceedings of the 10th international conference on World Wide Web,

WWW ’01, pages 697–707, New York, NY, USA, 2001. ACM. ISBN
1-58113-348-0.

[11] Microsoft. Windows user experience interaction guidelines. http://
msdn2.microsoft.com/en-us/library/aa511258.aspx, May
2011.

[12] R. Moriyon, P. Szekely, and R. Neches. Automatic generation of help
from interface design models. In Proceedings of the SIGCHI confer-
ence on Human factors in computing systems: celebrating interdepen-
dence, CHI ’94, pages 225–231, New York, NY, USA, 1994. ACM.
ISBN 0-89791-650-6.

[13] P. Sukaviriya and J. J. de Graaff. Automatic generation of context-
sensitive ”show and tell” help. Technical Report GIT-GVU-92-18,
Georgia Institute of Technology, July 1992.

[14] P. Sukaviriya and J. D. Foley. Coupling a UI framework with auto-
matic generation of context-sensitive animated help. In Proceedings
of the 3rd annual ACM SIGGRAPH symposium on User interface soft-
ware and technology, UIST ’90, pages 152–166, New York, NY, USA,
1990. ACM. ISBN 0-89791-410-4.

[15] P. N. Sukaviriya, J. Muthukumarasamy, A. Spaans, and H. J. J.
de Graaff. Automatic generation of textual, audio, and animated help
in uide: the user interface design. In Proceedings of the workshop
on Advanced visual interfaces, AVI ’94, pages 44–52, New York, NY,
USA, 1994. ACM. ISBN 0-89791-733-2.

[16] B. V. Zanden. An incremental algorithm for satisfying hierarchies of
multiway dataflow constraints. ACM Trans. Program. Lang. Syst., 18
(1):30–72, 1996.

183

