
Algorithms for User Interfaces

Jaakko Järvi
Texas A&M University
jarvi@cse.tamu.edu

Mat Marcus

mmarcus@emarcus.org

Sean Parent
Adobe Systems Inc.
sparent@adobe.com

John Freeman
Texas A&M University
jfreeman@cse.tamu.edu

Jacob Smith
Texas A&M University
jnsmith@cse.tamu.edu

Abstract
User interfaces for modern applications must support a rich set of
interactive features. It is commonplace to find applications with
dependencies between values manipulated by user interface ele-
ments, conditionally enabled controls, and script record-ability and
playback against different documents. A significant fraction of the
application programming effort is devoted to implementing such
functionality, and the resulting code is typically not reusable.

This paper extends our “property models” approach to program-
ming user interfaces. Property models allow a large part of the func-
tionality of a user interface to be implemented in reusable libraries,
reducing application specific code to a set of declarative rules. We
describe how, as a by-product of computations that maintain the
values of user interface elements, property models obtain accurate
information of the currently active dependencies among those ele-
ments. This information enables further expanding the class of user
interface functionality that we can encode as generic algorithms. In
particular, we describe automating the decisions for the enablement
of user interface widgets and activation of command widgets. Fail-
ing to disable or deactivate widgets correctly is a common source
of user-interface defects, which our approach largely removes.

We report on the increased reuse, reduced defect rates, and im-
proved user interface design turnarounds in a commercial software
development effort as a result of adopting our approach.

Categories and Subject Descriptors D.2.2 [Design Tools and
Techniques]: User interfaces; D.2.13 [Reusable Software]: Reuse
models

General Terms Algorithms, Design

Keywords Software reuse, Component software, User interfaces,
Declarative specifications, Constraint systems

1. Introduction
The role of a user interface, such as a dialog window, can be
summarized as supporting the user in selecting valid values for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE’09, October 4–5, 2009, Denver, Colorado, USA.
Copyright c© 2009 ACM 978-1-60558-494-2/09/10. . . $10.00

a command or function to be executed in a program. In modern
applications this support may mean, for example, computing values
of some user interface elements automatically when values of other
elements change, storing and retrieving default values, capturing
user actions into a replayable script, undo and redo functionality,
disabling user interface elements when their values are irrelevant
for a final result, etc. This list is long—it is no small task for
programmers to implement high-quality user interfaces.

In the prevailing approach to programming graphical user inter-
faces (GUIs), one of many GUI frameworks [6, 17, 31] provides a
selection of widgets as reusable software components, and the pro-
grammer implements a user interface as a composition of widgets
by specifying the interactions between the components. The in-
teractions are typically expressed using imperative object-oriented
code placed in event handlers. Even in user interfaces with rela-
tively simple functionality, interactions between components are
often surprisingly complex. Consequently, the event-handling logic
that expresses the interactions is similarly complex, often scattered
to many locations in the program, and seldom reusable across user
interfaces. It is thus not surprising that user interface code can ac-
count for 30–50% of applications’ code [21, 25], and a dispropor-
tionately higher share of the reported defects [25].

We have previously introduced property models [13], an ap-
proach to explicitly model many commonalities in the behavior
of a class of typical user interfaces, such as dialog windows. We
showed how an algorithm for computing new values of user in-
terface elements after changing values of other elements and an
algorithm for script recording and playback can be reused across
user interfaces. These algorithms are generic, parametrized by a
(declaratively specified) model that represents the variables manip-
ulated by a user interface and the functional dependencies between
those variables. We suggested that where property models can be
applied, the amount of code is notably reduced and software quality
improves compared to using a traditional GUI framework.

This paper develops the property models approach further. We
focus on how to obtain, alongside computing updated values for
user interface elements, accurate information of which functional
dependencies between user interface elements were active in com-
puting those values. Besides showing how to compute this informa-
tion we explain how it enables further user interface functionality
to be encoded as reusable algorithms. In particular, we show how
this information gives the means for algorithms for the enablement
and disablement of widgets when they are not relevant to the result
of a user interface, and activation and de-activation of command
widgets when the current result of a user interface does not satisfy
stated conditions.

147

We report on an experiment that quantifies some of the benefits
of property models: the experiment shows an increase in program-
mer productivity and a significant reduction of defects in devel-
oping user interfaces following the adoption of our approach. The
experimental results reported are obtained using the Adobe Soft-
ware Technology Labs’ (STLab) open-sourced property model li-
brary [24]. We are actively working on the system so, at times, the
discussion in this paper diverges from the currently deployed prop-
erty model library, reflecting instead the state of our research proto-
type system. This system and other artifacts related to this research
are available for download [23].

To sum up the introduction, we emphasize an essential charac-
teristic of property models, distinguishing them from contemporary
GUI frameworks. Let us refer to some piece of state of a user inter-
face element, such as its value or enablement state, as an attribute.
As described above, in traditional GUI programming the program-
mer writes procedures that explicitly change the state of a set of
attributes. Some GUI frameworks [20, 18, 22] allow the program-
mer to register functional dependencies between attributes which
the framework maintains automatically. Regardless of the method
of expression, the result is a network of functional dependencies
between attributes and a machine that governs when and which of
these functional dependencies are applied. The state of the machine
the programmer can observe is the current values of the individual
attributes. The state of a user interface, however, consists of more
than the combined states of its individual attributes. In particular, it
includes information on which functional dependency was applied
to obtain the current value of each attribute. Information obtained
from this “network state” is crucial for reusable algorithms for user
interfaces, but it is not available in contemporary GUI frameworks.
A property model is an explicit model of dependencies between
parameters to a command. In particular, it maintains which depen-
dencies are currently in effect in the model. The model does not
manage individual attributes of user interface widgets, but user in-
terface widgets can be bound to a property model’s parameters: the
state of the property model then provides a model for part of the
network state of a user interface as well. This information is what
enables reusable algorithms that implement user interface function-
ality. The rest of the paper expands on this observation.

2. Background
A large class of user interfaces perform the function of command
parameter synthesis [13]: a user interface assists a user in produc-
ing valid parameters to some command to be executed in a pro-
gram. Often these interfaces allow the user to manipulate a (larger)
set of variables from which a (smaller) set of command parameters
are computed. Typical examples of user interfaces performing com-
mand parameter synthesis are a “save as” dialog, an image resize
dialog, toolbars and palettes that issue commands, etc. These inter-
faces could support more complex behavior, such as script record-
ing and playback. Property models target this class of user inter-
faces. The goal is that large parts of the their functionality can be
implemented as reusable algorithms, parametrized by a specifica-
tion of the space of variables involved in command parameter syn-
thesis and the dependencies among these variables.

As an example, consider a dialog for saving an image file, like
the one that appears in Figure 1. It consists of a text field for en-
tering a file name, a menu of file types, and sliders providing two
different avenues for the user to configure compression when sav-
ing in a format that supports it. The slider values are tied together
by some relationship expressing the trade-off between compression
ratio and image quality, each on a scale from 1–100%, the details
of which are irrelevant to this example.

The dialog assists the user in synthesizing the parameters for
a file save command. Figure 2 shows a specification of a property

Figure 1. A dialog for saving an image file.

sheet save image file {
interface:

file name : ””;
file type : ”bmp”;
compression ratio : 100;
image quality : 100;

logic:
relate {

compression ratio ⇐= 100 − 4 × (100 − image quality);
image quality ⇐= 100 − (100 − compression ratio) / 4;
}

output:
result ⇐= (file type == ”jpeg”) ?
{ type: file type, name: file name, ratio: compression ratio }:
{ type: file type, name: file name };

invariant: check name ⇐= file name 6= ””;
}

Figure 2. A declarative specification, in the Adam language, of the
property model for the dialog in Figure 1.

model for this command parameter synthesis task written in the
domain specific declarative language Adam [24], part of Adobe’s
property model library. Briefly, the interface, output, and invariant
sections declare the variables, or properties, of the property model.
Interface variables can be updated by a client of the property
model, e.g., as a result of a user interacting with a user interface
widget. The values of output variables constitute the result of com-
mand parameter synthesis. The (Boolean) value of invariant vari-
ables indicates whether a set of variables satisfies a stated condi-
tion. The logic section defines the dependencies and computational
rules between variables. The language for these computations is the
ASL expression language, which can make calls to registered ex-
ternal (C++) functions, and can thus perform arbitrary actions. The
task of the application programmer is to define these computations,
we call them methods, but when and which of them are executed is
controlled by the property model.

Though orthogonal to property models specifications, a com-
plementary language, named Eve, can be used to specify the layout
and presentation qualities of interface elements, as well as bindings
between widgets in the user interface and values in the property
model. The layout specification for the dialog in Figure 1 appears in
Figure 3. We discuss the bindings established by this specification
in Section 3. For further details on the Adam and Eve languages,
we point the reader to their programmer documentation [2].

To demonstrate how straightforward implementing user inter-
faces for command parameter synthesis can be with property mod-
els, we discuss the simplified version of the “Modal Dialog Inter-
face Kit API” [2]. This API provides a single function that brings
up a dialog and manages it with the assistance of the property model

148

layout save image file {
view dialog(name: ”Save Image As...”,

placement: place column,
spacing: 6,
child horizontal: align fill) {
edit text(bind: @file name, name: ”File name:”);
popup(bind: @file type, name: ”Save as type:”, items: [
{ name: ”Windows bitmap (.bmp)”, value: ”bmp” },
{ name: ”JPEG (.jpeg)”, value: ”jpeg” }

]);

row() {
column(child horizontal: align right) {

label(name: ”Compression ratio:”);
label(name: ”Image quality:”);
}
column(horizontal: align fill, child horizontal: align fill) {

slider(bind: @compression ratio,
format: {first: 1, last: 100, interval: 1});

slider(bind: @image quality,
format: {first: 1, last: 100, interval: 1});

}
}
row(horizontal: align right) {

button(name: ”Save”, action: @ok, bind: @result,
default: true);

button(name: ”Cancel”, action: @cancel);
}}}

Figure 3. A declarative specification, in the Eve language, of the
widget layout for the dialog in Figure 1.

library, as well as a library for automatic layout of user interface el-
ements, and a library of user interface widget components.

dialog result t handle dialog(
const dictionary t& input variables,
istream& layout definition,
istream& property model definition)

The dictionary t type is an associative array data structure. The
input variables dictionary contains the contextual information to
populate the property model’s input variables. The two input
streams supply the declarative layout and property model speci-
fications: the dialog’s presence and behavior (validating user input,
initializing and closing the dialog, computing values shown in the
dialog’s widgets, disabling and enabling widgets, and recording
and playing back scripts) are entirely effected by libraries, gov-
erned by the two specifications. When the dialog is dismissed, the
result is returned in a dialog result t structure. This structure con-
tains, among other things, the parameters to be supplied to a com-
mand in a program (output variables of the property model) and the
action that terminated the dialog (such as “Save” or “Cancel”).

3. Widget Enablement with Property Models
We suggest in Section 1 that the currently active functional depen-
dencies between a property model’s variables (that reflect a part
of the “network state” of a user interface) is crucial input for al-
gorithms that implement user interface functionality. We describe
how this information can be used to derive a generic widget enable-
ment algorithm in Section 5; here we describe the intuitive reasons
behind widget enablement decisions, and discuss an example dia-
log implemented using property models that enables and disables
widgets in accordance with those reasons. We note that neither the
property model nor layout specifications of the dialog require any
code that pertains to enablement.

In mainstream user interface programming, programmers ex-
plicitly express the conditions under which a particular widget
should be disabled. This requires complex logic; in our experience
user interfaces that disable widgets incorrectly, or do not imple-
ment widget enablement at all, are frequent. Programmers often
follow “rules of thumb” offered by user interface guidelines for
the deployment platform [3, 15, 1] to guide the decisions on when
to enable and disable widgets. The advice may differ between the
guides, but certain universally accepted reasons can be identified.
To discuss these reasons, we distinguish between enablement of
widgets that launch commands (such as command buttons) and en-
ablement of widgets that allow users to interactively edit the wid-
gets’ value (such as text and list boxes, and radio buttons). Al-
though these behaviors fall under the general scope of enablement,
the reasons for decisions to enable or disable a widget are unrelated,
and the mechanisms governing those decisions completely differ-
ent. We refer to the former mechanism as command activation, and
the latter as widget enablement. We discuss each of these in turn
below.

3.1 Command activation
The result of command parameter synthesis is a set of parameters,
possibly subject to preconditions, for a command. Ideally, a user
interface avoids constructing command objects from parameters
that do not satisfy the preconditions. A user interface for command
parameter synthesis may thus be expected to provide a “latch”
that controls when a command object can be constructed. The
canonical form of such a latch is activating and deactivating the
“OK” button of a dialog. Consider the example from Section 2.
The dialog in Figure 1 for saving an image will launch a command
to write a file on a disk when the “Save” button is clicked, but it
may be desirable to keep this button inactive if no file name has
been given. Alternatively, the button could be kept activated, but
an error diagnostic is shown to the user if it is clicked. Property
model engines are neutral on these matters; the behavior is a policy
decision made in the architectural layers that sit on top of the
property model engine.

Section 5.1 describes how a property model component com-
putes the information that can guide activation decisions; here, we
explain the reasoning with an example. The property model specifi-
cation in Figure 2 contains two items noteworthy for command acti-
vation. First, the result variable in the output section holds the com-
mand arguments. Second, the check name variable in the invariant
section specifies a requirement for when the file name variable is
valid. To reflect the state of a property model in a user interface,
widgets, like “Save” and “Cancel,” are be bound to a property
model’s variables. Such bindings are established, for example, in
an Eve layout specification using the bind attribute. Relevant for the
discussed example, the specification in Figure 3 binds the “Save”
command button to the result variable and the “File name” text box
to the file name variable.

Assuming now the “File name” text box is empty, the follow-
ing reasoning by the property model and layout libraries justifies
deactivating the “Save” button: (1) due to the binding established
for the “File name” widget, the value of the file name variable is
the empty string; (2) the check name invariant is not satisfied; (3)
the file name variable is considered to have an invalid value; (4)
the output variable result depends on file name, and it too is thus
considered to have an invalid value; and (5) the “Save” command
button, since it is bound to result, should be deactivated.

3.2 Widget enablement
The intuitive reason for disabling a widget is when the value of the
widget cannot affect the output of command parameter synthesis.
Consider again the image file save dialog. Our simplified example

149

offers two possible choices for the file type: BMP and JPEG. The
former file type does not support lossy compression, whereas the
latter does. The values of the slider widgets labeled “compression
ratio” and “image quality” are involved solely in compression, and
can thus be ignored (and disabled) when the chosen file type is not
JPEG.

The generic mechanism for detecting when a value of a user in-
terface element may affect the output of command parameter syn-
thesis is the subject of Section 5.2. Here, we describe the reasoning
performed by the property model library in the image file save ex-
ample.

The Eve specification in Figure 3 binds the “Compression ra-
tio” slider widget to the property model’s compression ratio vari-
able, and “Image quality” widget to the image quality variable. Fur-
ther, the “Save as type” dropdown widget is bound to the file type
variable. The expression defined to compute the value of the result
variable only uses the compression ratio variable when the file type
variable has value ”jpeg”. Therefore, a value other than ”jpeg”
in the “Save as type” dropdown widget’s menu will not exhibit a
dependency from compression ratio to result, and thus not from
image quality either. This manifests as disabling the two slider wid-
gets bound to the compression ratio and image quality variables.

4. Dependency Information in Property Models
A property model encapsulates the values of a set of variables ma-
nipulated by a user interface, defines the functional dependencies
among them, and manages the application of those dependencies.
We repeat the point that user interface algorithms need access to
information regarding which dependencies were active in arriving
at the current state of the user interface. Below we describe how
we can represent this network of dependencies as a concrete data
structure. In particular, we summarize how the network of depen-
dencies between variables gives rise to a constraint system, con-
cretely represented as a constraint graph. We then remind how to
obtain a candidate set for the currently active dependencies: this
set is represented by a solution graph, a subgraph of the constraint
graph. Finally, we define how the methods of the solution graph are
evaluated to give a new valuation for the variables in the model.
Evaluating the methods yields, as a by-product, a third graph—the
evaluation graph—that represents the currently active functional
dependencies, and is a subgraph of the solution graph. Command
activation and widget enablement decisions need to consult all of
these representations. When discussing these graphs, we use the
subscripts c, s, and e to denote whether a graph is a constraint,
solution, or evaluation graph (e.g., Gc, Gs, and Ge).

Our earlier work [13] described the constraint system repre-
sentation of property models, including computing solution graphs
based on prioritizing the variables of a property model according
to how recently they have been updated by a user. Therefore, these
topics are presented very briefly in Sections 4.1–4.3. We do, how-
ever, define the constraint system at hand more precisely, and de-
scribe its properties that are necessary for justifying widget enable-
ment and command activation decisions. The operational seman-
tics of evaluation within the solution graph and the formation of
the evaluation graph are covered in depth.

4.1 Multi-way dataflow constraint systems
We represent the property model’s network of functional depen-
dencies as a particular kind of a multi-way dataflow constraint sys-
tem [35]. We remind that a constraint system S is a tuple S =
〈V,C〉, where V is a set of variables, each having a current value,
andC a set of constraints. Each constraint inC is a tuple 〈R, r,M〉,
where R ⊆ V ; r is some n-ary relation between variables in R,
where n = |R|; and M is a set of constraint satisfaction meth-
ods, or just methods. If the values of variables in R satisfy r, we

say that the constraint is satisfied. Executing any method m in M
enforces the constraint by computing values for some subset of R,
using another disjoint subset of R as inputs, such that the relation
r becomes satisfied. We refer to the input and output variables of a
method m as ins(m) and outs(m), respectively. The code realiz-
ing a method is considered a “black box”—it is the programmer’s
responsibility to ensure that a constraint is satisfied when any of its
methods is executed.

The constraint satisfaction problem for a constraint system S =
〈V,C〉 is to find a valuation of the variables in V such that each
constraint in C is satisfied. Each constraint can be satisfied inde-
pendently by executing one of its methods. However, to ensure
consistency over the whole system, methods should be chosen and
executed in an order such that once a variable has been read from or
written to by one method, no other method will write to it. An order
of methods satisfying these conditions is called a plan. Depending
on the problem, a plan may or may not exist, and may or may not
be unique. If a plan exists for a given constraint system, we say the
system is satisfiable; otherwise it is over-constrained. If more than
one plan exists, the system is under-constrained.

We place four well-formedness conditions on the constraint sys-
tems for property models (the t symbol denotes disjoint union):
(WF-1) for all constraints 〈R, r,M〉 in C, for all methods m in
M , ins(m) t outs(m) = R; (WF-2) for all methods m in S,
outs(m) 6= ∅; (WF-3) for any two constraints 〈R1, r1,M1〉 and
〈R2, r2,M2〉 in C, R1 6= R2; and (WF-4) for all constraints
〈R, r,M〉 in C, for any two methods m1,m2 in M , outs(m1) 6⊆
outs(m2). All of these conditions can be easily checked so that
models violating the conditions can be rejected, and easily satis-
fied so that the conditions are no real restrictions on what program-
mers can express. The condition WF-1 is known as method restric-
tion [29, p. 56], and it guarantees that a multi-way constraint system
can be solved or found unsolvable in polynomial time [32] with re-
spect to the number of constraints. Methods that violate WF-2 are
unnecessary, as they never affect the valuation of the system’s vari-
ables. WF-3 disallows two constraints that define a relation between
the exact same set of variables; no system violating WF-3 (but re-
specting WF-1 and WF-2) is satisfiable. WF-4 rules out constraints
for which there might be no criteria to favor one method over an-
other. This condition is important to guarantee the uniqueness of
plans in our constraint systems.

4.2 Constraint graph
A well-formed multi-way dataflow constraint system is in a one-
to-one correspondence with an oriented, bipartite graph Gc =
〈V +M,E〉, with vertex sets V and M representing the variables
and methods of the system, respectively, and E the directed edges
that connect each method to its input and output variables. An
example constraint graph appears in Figure 4(a). Where v, u ∈ V
and m ∈ M , the edge (v,m) indicates that the variable v is an
input of the method m, and (m,u) that m outputs to the variable
u. The graph is oriented, that is, (a, b) ∈ E =⇒ (b, a) 6∈ E,
because for each method m, ins(m) and outs(m) are disjoint.

The grouping of methods and variables into constraints is im-
plicit in the representation Gc = 〈V + M,E〉. To explain, we
use the notion of a neighborhood (nbh) of a vertex: in a graph
〈V,E〉, nbh(a) = {b | (a, b) ∈ E or (b, a) ∈ E}. Now let
∼nbh be the equivalence kernel of nbh , defined bym1 ∼nbhm2 ⇔
nbh(m1) = nbh(m2). Assuming method restriction (WF-1), all
method vertices of the same constraint belong to the same equiva-
lence class in the quotient set M/∼nbh . That is, two methods m1

and m2 belong to the same constraint if [m1]nbh = [m2]nbh . Fur-
thermore, by WF-2, [m1]nbh 6= [m2]nbh implies that m1 and m2

are methods from two different constraints. In the following, when
there is no fear of confusion, we omit the subscript ·nbh and just

150

write [·] and ∼. For instance, in Figure 4(a), the methods m1 and
m2 are in the same neighborhood ([m1] = [m2] = {q, c}).

4.3 Solution graph
A plan for a constraint system can be explicitly represented as a
subgraph of the constraint graph, called a solution graph. We use
the notation G[V] to indicate the vertex-induced subgraph of G: if
V is a subset of G’s vertex set, G[V] is the graph whose vertex set
is V and the edge set includes all edges of G with both endpoints
in V .

Definition 1 (Solution graph). Let Gc = 〈V + M,E〉 be a
constraint graph. Let M ′ ⊆ M . Gs = Gc[V + M ′] is a solution
graph of Gc iff (1) Gs is acyclic, (2) {[m] | m ∈ M ′} = M/∼,
(3) |M ′| = |M/∼|, and (4) ∀v ∈ V. in-degree(v) ≤ 1.

The second and third conditions together establish thatM ′ contains
exactly one method from each constraint, and the fourth that no two
methods output to the same variable. The third condition is implied
by the first and the fourth because of WF-3. The solution graph for
the constraint graph in Figure 4(a) appears in Figure 4(b).

As explained in [9], to deal with the under-constrained con-
straint systems that arise from user interfaces we employ constraint
hierarchies and stay constraints [4]. Each variable in the system is
given a stay constraint, represented by a double-box in Figure 4. A
stay constraint consists of a single method (stay method) with one
output and no inputs—it is thus a constant function. Every time the
valuation of a variable changes, the stay method of that variable’s
stay constraint is constructed anew, so that the constant function
has the current value of the variable. Thus, executing a stay method
of a variable keeps the variable unchanged.

Since not all stay constraints and user-defined constraints can be
satisfied simultaneously, the solution of this over-constrained sys-
tem is defined as the solution to the “best” satisfiable constraint
system that retracts some of the constraints. To decide which con-
straints to retract, each constraint is assigned a strength and, intu-
itively, the best system is the one that retracts the fewest and weak-
est constraints. The “locally-predicate-better” criterion [10] defines
this precisely: if one solution enforces a constraint that the other
does not, and every stronger constraint is either retracted in both
solutions or enforced in both solutions, then the former solution is
locally-predicate-better than the latter.

We assign the highest strength, we call it must, to the user-
defined constraints to indicate that no solution can retract them.
An admissible solution is one that enforces all constraints with the
strength must. We arrange all stay constraints to be weaker than the
must constraints. Strengths of stay constraints are totally ordered.
The ordering is determined by the editing history of user interface
elements bound to the variables: stay constraints of the variables
bound to the most recently-edited widgets will be strongest, indi-
cating that the values of those variables (and thus the values of the
user interface widgets bound to the them) should be preserved. This
effects the “least surprising” behavior for user interfaces based on
property models. We refer to the ordering between variables that a
property model maintains as the priority order.

Insisting on a total order of stay constraints guarantees that the
best satisfiable constraint system that has an admissible solution is
unique. A stronger argument is that the solution to this best system
is unique. This is the case if we start from a constraint system
that satisfies the well-formedness conditions defined in Section 4.1,
augment it with stay constraints for each variable (that does not
have one already), and assign strengths as described above. We
omit the proofs here and instead refer to an accompanying technical
report [9] for a detailed account of the properties of the constraint
systems of property models.

We call the unique solution graph of the best satisfiable con-
straint system that has an admissible solution the most preferred so-
lution graph. The uniqueness of the most preferred solution graph
is a crucial property for the predictability of user interfaces based
on property models, and a necessary prerequisite for, e.g., an al-
gorithm for widget enablement: if the flow of data could not be
uniquely determined in each state of the user interface, there would
be little hope to determine how editing particular values might af-
fect the outputs of command parameter synthesis, or what kind of
changes to the current solution graph they might cause.

As explained in [13], we employ a derivative of Zanden’s
Quickplan algorithm [35] to find the most preferred solution graph
for a particular strength assignment. Adapting Zanden’s analysis of
Quickplan, it can be shown that the worst-case time complexity for
finding the most preferred solution graph is O(n2), where n is the
number of constraints in the system [9].

4.4 Evaluation Graph
The set of method vertices in a solution graph is a plan of a
constraint system. Executing the methods in the plan according to a
topological ordering of the vertices of the solution graph will give
the system’s variables a valuation that satisfies all its constraints.
As explained above, besides the new valuation, this “execution
phase” produces the evaluation graph that contains exactly the
functional dependencies between variables that are active for the
current priority order and variable valuation. This information is
necessary for enablement and other algorithms.

The evaluation graph may differ from the solution graph be-
cause a method may not need all of its inputs in computing its
result. We pass input variables to a method by name: to obtain a
value of one of its input variables, a method has to explicitly ask
for it. Only if a method m asks for the value of its input variable
v during execution of the method is the edge (v,m) included in
the evaluation graph. We call these edges relevant and say that the
variable v is relevant to the method m. Assuming a solution graph
Gs = 〈V + M,EV + EM 〉, where EV are the edges whose tar-
get vertex is in V , and EM the edges whose target vertex is in
M , the evaluation graph Ge is the subgraph of Gs induced by the
edges EV + Er where Er ⊆ EM are the relevant edges. That is,
Ge = 〈V +M,EV + Er〉.

Figure 4 shows one example each of a constraint, solution, and
evaluation graph. The constraint graph represents all the possible
functional dependencies that may be in effect during some state of
the property model. The solution graph represents the functional
dependencies that may be in effect for a particular priority ordering
of the variables. The evaluation graph represents the functional
dependencies that are in effect for a particular priority ordering and
valuation of the variables. Below we focus on the execution phase
of property model constraint systems that produces the evaluation
graph.

As described above, a property model component maintains a
valuation of variables such that certain constraints are satisfied; a
priority ordering among the variables; and information on what de-
pendencies between the variables are active. The basic requests to a
property model are to assign one of its values and/or to change the
priority of one of the variables. The property model component re-
acts to these queries by computing a new valuation of its variables.
Simplifying some, these requests arise as follows. In a user inter-
face that is a client of a property model component, some number of
user interface widgets are bound to specific variables in the model
and reflect their values to a user. Whenever a user edits the value
of a widget, the same event handler code is executed as a response.
This code requests that the property model assigns the new value
to the variable to which the widget is bound, and notifies all other
widgets to update themselves. The event handlers dealing with the

151

76540123r 76540123q

76540123c
76540123ft76540123fn

76540123ch m1m2m3

mi

2 3

1

465

��

~~

PP

>>

��

 ww

��

		

��
o/

�� xx

rr

hhii

NN

76540123r 76540123q

76540123c
76540123ft76540123fn

76540123ch m1m3

mi

2 3

1

��

~~

��

 ww

��

		

��

�� xx

rr

76540123r 76540123q

76540123c
76540123ft76540123fn

76540123ch m1m3

mi

2 3

1

��

~~

��

��

		

��

�� xx

rr

(a) (b) (c)

Figure 4. The constraint graph (a), a solution graph (b), and an evaluation graph (c) for the property model described in Figure 2. In all
of the graphs, the variable r is the variable result in Figure 2; likewise, q is quality, c compression ratio, fn file name, ft file type, and ch
check name. The relate clause in Figure 2 gives rise to the constraint consisting of the methods m1 and m2, and the method in the output
section of Figure 2 gives rise to the constraint consisting of the method m3. The constraint graph (a) contains all stay methods (rectangles
with double frames), all user-defined methods (rectangles with single frames), and all variables (circles). The stay methods 4, 5, 6, and
method m2 and the edges connected to them are not part of the solution graph (b). The evaluation of method m3 does not consider the
variable c, thus the edge from c to m3 is irrelevant: this edge is not included in the evaluation graph (c).

update notifications all perform the same task: request the (possibly
new) value for a variable from the property model component and
display the value in the widget. Call the above two requests set and
get.

Consider a constraint graph Gc = 〈V +M,E〉. We can define
the state of a property model, the current configuration, as a tuple
C = 〈Gs, s, ν〉, where Gs is a solution graph of Gc, s is a strength
assignment (defines the priority order among the variables), and
ν a valuation of variables in V and edges in E. The valuation ν
maps a variable to the tuple 〈t, c, h〉, where t is the current value
of the variable; c a flag indicating whether the value of the variable
is “computed,” i.e., up-to-date; and h a flag indicating whether the
value was changed from a previous evaluation round. For clarity,
instead of Boolean values, c can have values uncomputed and
computed, and h the values unchanged and changed. Further, ν
maps all edges e = (v,m) ∈ E to one of the values relevant or
irrelevant. The former signifies that when the code of the method
m was executed, the value of the variable v was requested, the
latter that it was not. Consequently, ν is overloaded so that the
expressions ν(v) and ν(e) are both valid. We use the notation
[v 7→ val]ν for the valuation function identical to ν, except that the
variable v maps to val; the analogous notation applies for edges.

Assuming a constraint graph Gc = 〈V +M,E〉, and a current
configuration C = 〈Gs, s, ν〉, an invocation of set to assign a new
value, say t, for some variable v has the following effect on C:

1. A new strength assignment s′ is computed from s, such that the
stay constraint of v will become the strongest of the stay con-
straints, and the relative order of other stay constraints remains
the same. Thus, variable v is given the highest priority.

2. Some changes to the strength assignment are such that the
most preferred solution graph is known to remain the same. In
particular, the solution graph will not change if v is a source in
the current solution graph [9]. If necessary, the solver algorithm
is run to produce a new solution graphG′

s, otherwiseG′
s = Gs.

3. A new valuation ν′ is computed from ν as follows: the value
of v is set to t; the computed-flag of every variable is set to
uncomputed; the changed-flag is set to changed for v and to
unchanged for all the other variables; and the relevancy-flag is
set to relevant for all edges (v′,m′) from variables to methods,
such that (v′,m′) is not an edge in Gs but is an edge in G′

s.
A method is not executed if it can be seen that its relevant
inputs have not changed. The above treatment of relevancy-

flags makes sure that all new methods of G′
s that were not

included in Gs will be executed during evaluation.

4. The eval function, shown in Figure 5 and described in detail
below, is applied to each variable in V . A call to eval may
change the valuation, so the current valuation ν′ is “threaded
through” these calls, producing a new valuation ν′′.

The result of the above steps is a new current configuration
〈G′

s, s
′, ν′′〉. As discussed above, the current evaluation graph G′

e

is obtained as the subgraph ofG′
s where the edges that ν′′ indicates

to be irrelevant have been removed. Widgets that are notified that
their values might have changed send get requests that consult ν′′

to obtain their new values. Other algorithms to determine attributes
such as ones used to set widgets’ enablement states are executed.
They will query ν′′ and possibly all of Gc, G′

s, and G′
e depend-

ing on their needs. User interface widgets are notified of possible
changes in their attributes. Then, the user interface driven by the
property model is in a consistent state, and the property model is
ready for another change request.

In the definition of the eval function we use the following
metavariables, using primes, subscripts, and superscripts as appro-
priate: Gs for solution graphs; V for sets of variables; u and v for
variables; m for methods (· is a special value for m that indicates
“no method”); t for values of variables; h for values of the changed-
flag; ν for valuation functions; µ for mapping a method to the code
of the method, and to two sequences of variables indicating the in-
put and output variables of the method; and f for the code of a
method. We use the underscore symbol “ ” as a variable that binds
to anything, similarly to how it is used in, say, Haskell or ML.

Figure 5 defines the function that evaluates a new value of a
variable. We use the notation func | ν → t | ν′ with the following
meaning: the function func (either eval or evalmany) is evaluated
within the context of the current valuation ν, which produces a
new valuation ν′ and the result t. The symbol “·” indicates that
the function has no result.

The evalmany function, defined by the rules EVALMANY and
EVALMANY-EMPTY, simply invokes eval for each variable in a set
in some order. Each call to eval traverses the dependencies in
the solution graph upwards and evaluates all variables that are
necessary for determining the value of the current variable, and
then executes the method of the current variable. Along the way,
the relevancy information is collected and maintained to compute
the evaluation graph and to avoid recomputing a method if its inputs
are known not to have changed.

152

EVAL-COMPUTED
ν(v) = 〈t, computed, 〉 m 6= ·

eval(v,m,Gs) | ν → t | [(v,m) 7→ relevant]ν

EVAL-COMPUTEDNOMETHOD
ν(v) = 〈t, computed, 〉
eval(v, ·, Gs) | ν → t | ν

EVAL-INPUTS
ν(v) = 〈 , uncomputed, 〉 {m′} = insGs(v)

V in = insGs(m′) v′ ∈ V in ν(v′) = 〈 , uncomputed, 〉 evalmany(V in, Gs) | ν → · | ν′ eval(v,m,Gs) | ν′ → t | ν′′

eval(v,m,Gs) | ν → t | ν′′

EVAL-UNCHANGED
ν(v) = 〈 , uncomputed, 〉

{m′} = insGs(v) {vin
1 , . . . , v

in
n} = insGs(m′) ν(vin

1) = 〈 , computed, 〉 · · · ν(vin
n) = 〈 , computed, 〉

ν((vin
1 ,m

′)) = relevant =⇒ ν(vin
1) = 〈 , , unchanged〉 · · · ν((vin

n ,m
′)) = relevant =⇒ ν(vin

n) = 〈 , , unchanged〉
{vout

1 , . . . , vout
l , . . . , vout

k } = outsGs(m′) v = vout
l ν(vout

1) = 〈t1, , h1〉 · · · ν(vout
k) = 〈tk, , hk〉

ν′ = [vout
1 7→ 〈t1, computed, h1〉, . . . , vout

k 7→ 〈tk, computed, hk〉]ν eval(v,m,Gs) | ν′ → t′ | ν′′

eval(v,m,Gs) | ν → t′ | ν′′

EVAL-CHANGED
ν(v) = 〈 , uncomputed, 〉

{m′} = insGs(v) {vin
1 , . . . , v

in
l , . . . , v

in
n} = insGs(m′) ν(vin

1) = 〈 , computed, 〉 · · · ν(vin
n) = 〈 , computed, 〉

ν((vin
l ,m

′)) = relevant ν(vin
l) = 〈 , , changed〉 ν′ = [(vin

1 ,m
′) 7→ irrelevant, . . . , (vin

n ,m
′) 7→ irrelevant]ν

µ(m′) = 〈f, (uin
1 , . . . , u

in
n), (uout

1 , . . . , uout
k)〉 f(ν′, λν.(eval(uin

1 ,m
′, Gs) | ν), . . . , λν.(eval(uin

n,m
′, Gs) | ν)) → (t′1, . . . , t

′
k) | ν′′

ν(3) = [uout
1 7→ 〈t′1, computed, changed〉, . . . , uout

k 7→ 〈t′k, computed, changed〉]ν′′ eval(v,m,Gs) | ν(3) → t′ | ν(4)

eval(v,m,Gs) | ν → t′ | ν(4)

EVALMANY-EMPTY
evalmany(∅, Gs) | ν → · | ν

EVALMANY
eval(v, ·, Gs) | ν → · | ν′ evalmany(V ′, Gs) | ν′ → · | ν′′

evalmany({v} t V ′, Gs) | ν → · | ν′′

Figure 5. The evaluation rules for obtaining a value of a variable in a property model and effecting the consequent state changes to the
variable and edge valuation. We overload the insGs and outsGs functions for both methods and variables, so that they return the sets of
incoming and outgoing vertices in Gs.

The eval function defines how to obtain the value of a single
variable. Besides the variable whose value should be obtained, eval
has two other parameters: the method m that requested the value
of the variable and the current constraint graph Gs. The method
parameter accepts the value “·”, which indicates that the value of a
variable is not requested by any method.

The rules EVAL-COMPUTED and EVAL-COMPUTEDNOMETHOD

define the course of action in the case where the computed-flag
of the requested variable is set. This indicates that the value of
the variable is up-to-date and its value is returned immediately. The
EVAL-COMPUTED applies when some method is asking for the value
of a variable and thus it additionally sets the relevancy-flag of the
“variable to method” edge. EVAL-COMPUTEDNOMETHOD matches
when the evaluation request comes from evalmany, rather than
from executing a method.

The rules EVAL-INPUTS, EVAL-UNCHANGED, and EVAL-CHANGED

define what to do when the value of a variable has not yet been com-
puted. Assume we are evaluating the value of the variable v. All
these three rules examine the method m′ that outputs to v in the
current solution graph, and the input variables of m′.

EVAL-INPUTS matches if any input variable ofm′ is still uncom-
puted. The rule invokes evalmany to evaluate the input variables,
then invokes eval for v again.

EVAL-UNCHANGED matches when all the input variables of m′

are computed and all the input variables that are relevant to m′ are
unchanged. In this case, it is not necessary to execute the method
m′ again. The new valuation marks all of the output variables of
m′ as computed, but does not change their values or changed-flags.
Finally, eval is invoked again for v to effect the possible update of
the relevancy-flag for an edge from v to some method m. Note that
the premise v = vout

l in EVAL-UNCHANGED is redundant; we include

it to make it obvious that v is one of the output variables of m′. We
further remark that ifm′ is a stay method, it has no inputs, and thus
EVAL-UNCHANGED applies and retains v’s valuation unchanged.

EVAL-CHANGED matches when all the input variables of m′ are
computed and at least one input variable of m′ has changed. If this
is the case, the code of m′ needs to be executed. This entails (1)
retrieving the code f of m′, (2) constructing a callback function
for each input variable of f that will obtain the value of the input
variable by another call to eval, (3) passing the callbacks to f , and
(4) executing f . If the code of a method invokes any of its callbacks,
a new call to eval results, where the method requesting the value of
a variable is m′. This call will eventually reach EVAL-COMPUTED,
which will set the corresponding relevancy-flag of the edge to m′,
and thus establish one piece of the evaluation graph. Once the
method f returns, the values in the tuple it returns are written to
the output variables of m′ (v is one of them) and the computed and
changed-flags of these output variables are set as well.

The correctness of the evaluation phase depends on methods
never copying and saving the current valuation: the same shared
state should always be used when invoking any of the callbacks of
a method, and not held after the method returns. In the current prop-
erty model library [24], we provide a simple expression language
for defining the bodies of methods, but as explained in Section 2,
calls to C++ functions are allowed. Violating the above conditions
in such functions is not easy, but if the programmer so desires, pos-
sible.1 Note also that since we allow arbitrary code to be executed
in methods, we cannot offer guarantees on their termination.

1 In a prototype implementation we have used Haskell as the language for
implementing methods. Haskell’s type system and monads can be easily
harnessed to detect violations of the condition statically.

153

5. Enablement generically
Section 3 discussed the intuitive reasons for making decisions
about widget enablement. In this section we explain how, based
on the state of a property model, to determine when the conditions
to enable or disable widgets exist. Widgets can act appropriately
based on those conditions, and other policies. The two algorithms
discussed in this section, command activation and widget enable-
ment, are possible because of the information in the constraint,
solution, and evaluation graphs; we define the algorithms in those
terms. Note that when we say that a property model’s variable
should be enabled/activated or disabled/deactivated, we mean that
a widget bound to that variable should be enabled/activated or dis-
abled/deactivated.

5.1 Command activation
Recalling the intuition from Section 3.1, a widget that executes a
command should be deactivated when the command’s precondi-
tions are not satisfied. In a property model, commands are bound
to output variables, and preconditions are expressed using invariant
variables. Thus, a command activation algorithm can determine that
a command should be deactivated if the output variable to which the
command is bound depends on a value upon which a failed invari-
ant also depends.

Since the functional dependencies currently active among the
property model’s variables are readily available in the evaluation
graph, the command activation algorithm reduces to the following
graph query:

An output variable o should be deactivated if, in the evalua-
tion graph, there exists a variable w such that (1) w reaches
o, and (2) w reaches a failed invariant.

5.2 Widget enablement
Recalling the intuition from Section 3.2, a widget should be dis-
abled whenever its value cannot affect an output variable. There
are two reasons why updating a value of some variable v could
affect an output variable o: (1) there exists a currently active func-
tional dependency between o and v, or (2) updating v could create
a functional dependency between o and v.

Again, the current functional dependencies are represented by
the evaluation graph, and the solution and constraint graphs can
be analyzed to predict changes to the functional dependencies trig-
gered by a request to update a variable. Rephrasing the rationale
above in terms of the graphs, a variable v could affect an output
variable o if (1) v reaches o, or if (2) updating v would generate a
new evaluation graph in which v reaches o.

The most precise algorithm to determine this condition is to,
in turn, (1) give each variable the highest priority; (2) generate a
new solution graph; (3) generate a new evaluation graph with the
edges present in both the old evaluation graph and the new solution
graph, and the edges present in the new solution graph that are not
present in the old evaluation graph; and (4) determine if the variable
reaches some output variable. See the accompanying technical re-
port [9] for an explanation why this is as precise as possible, unless
the bodies of the methods are analyzed. Unfortunately, this option
is expensive to compute.

Realistically, we develop a generic, close approximation:

A value of a variable v cannot affect an output variable if for
every variable w that is (1) an ancestor of v in the solution
graph, and (2) reachable from v in the constraint graph, then
(3) w does not reach any output variable in the evaluation
graph.

To see why this is correct, note that the solution graph is a
directed acyclic graph. Each variable v in the solution graph sits

at the root of an ancestor (directed acyclic) graph consisting of
every variable reachable from v in the transpose of the solution
graph. The ancestors of v are the variables in its ancestor graph.
For example, in the solution graph in Figure 4(b), variable q has
ancestors q and c. When we speak of methods and constraints in
the ancestor graph, it refers to the methods, and their constraints,
in the solution graph that are connected only to members of the
ancestor graph.

The ancestor graph of v partitions the variables of the solution
graph: partition A consists of the ancestor graph, partition B is
everything else. There may exist paths from A to B, but there can
be no path from B to A: because every variable in A can reach v,
any variable in B with a path to A would be an ancestor of v and
thus belong to A.

Any ancestor reachable from v in the constraint graph is called
a reachable ancestor. If we update v, then the only constraints that
could have different methods selected in the new solution graph
must be in v’s ancestor graph.2 This implies the following: in an
evaluation graph, v can reach some set of variables; if we update
v, it could reach a superset of those variables, and the difference
must come from its reachable ancestors. In other words, if none of
its reachable ancestors reaches an output variable, then there is no
way that updating v can make it reach an output variable.

6. Experience
Early experiences of employing property models in commercial
applications are very promising. In this section we report upon the
experiences at Adobe Systems, Inc. We first report on a significant
reduction in defect rates and vastly increased productivity when
using property models. Then we discuss further pros and cons of
our approach.

Recently, an effort was carried out to rewrite user interface code
for a best-selling application that formerly depended on a 32-bit-
only user interface framework. Some of the user-interface code was
rewritten to use a 64-bit savvy framework, while other parts were
instead rewritten to use a library built around the Adam property
model engine.

Four teams of roughly three engineers each, balanced in pro-
gramming skill, participated in the rewrite. Three of the teams, the
Adam engine (AE) teams, were tasked with rewriting code for a
large number of dialogs and palettes, varying in complexity, along
with the necessary visual description and supporting code to use
property models. A fourth team was tasked with rewriting other
dialogs, of similar complexity, to use a modern vendor-supplied
object-oriented UI framework.

During the time period under study, data was collected to sup-
port a number of metrics. Here we focus on the rate at which dialogs
were produced, and the number of software defects discovered.

Figure 6 compares the number of reported bugs over several
months for the three Adam engine teams (AE1–AE3) and the
traditional framework team (TF). We can see that it was rare for
more than 2–3 defects per week to be found for a given property
model team, while a conservative estimate for the defect rate for the
TF team was 10–20 defects per week. That is, the teams working
in the property model architecture produced defects at less than
twenty percent of the rate of that of the traditional framework team.
To give a sense of the importance of these results, we note that user
interfaces are a notorious source of defects. In a sample of defects
in a 20,000-bug database of a major Adobe desktop application,
roughly half were in the interface layer that property models target.

As with any prototype system, there have been challenges in
adopting property models. Property model-based programming is

2 This nontrivial statement is justified in an accompanying technical re-
port [9].

154

0 2 4 6 8 10 12 14 16
Reporting Week

0
5

10
15
20
25
30
35

Bu
gs

 R
ep

or
te

d

AE1
AE2
AE3
TF

Figure 6. The number of reported bugs during several months for
three Adam engine teams (AE1–AE3) and a traditional framework
team (TF). The teams were tasked with rewriting code for a large
number of dialogs of varying complexity. The teams each consisted
of roughly three engineers, balanced in programming skills.

a new way of approaching user interface programming, and there
is somewhat of a learning curve. The supporting tool ecosystem,
though more powerful than traditional user-interface builders, is
not as mature as with established frameworks. Notwithstanding
these limitations, in the above study, property model programmers
were substantially more productive than their counterparts on the
TF team. In the time period studied, the three AE teams combined
completed roughly 75 dialogs and palettes, with another 50 or so
underway. The TF team completed fewer than 10 altogether. The
product team did not believe they would be able to succeed in
porting to 64-bits in a single release without the property model
technology. As the tool set matures, in addition to the reduced
complexity, we expect to see further gains.

Other difficulties faced by teams adopting property models have
arisen because the existing logic in the code has actually been in-
complete or inconsistent. The explicit modeling required by our
approach forces the programmer to think through and correct in-
complete or faulty designs.

We have also observed benefits from the UI designer perspec-
tive. User interface designers are able to play with prototypes en-
capsulating the user interface element relationships much earlier in
the development cycle, without waiting for custom coding. Early
feedback of this kind helps to avoid costly late-cycle code changes.

7. Related Work
Systems based on declarative specifications are common in the area
of user interfaces. (Many have noticed that event handling logic for
GUIs can easily degrade into a hopeless tangle of spaghetti code.)
The combination of procedural and declarative program code has
found success in, for example, GUI element layout. The most
familiar example is perhaps HTML, CSS, and DOM combined
with JavaScript. The QTk library [12] in Mozart/Oz, Glade [7],
XUL [16], XAML [34], and XForms [5] serve as further exam-
ples. Some of these systems, along with rule-based systems such as
Drools [27], Jess [11], and R++ [14], also support concisely speci-
fying declarative rules for maintaining consistency across values in
user interfaces. Property models are distinguished from these sys-
tems by not only providing the ability to create rules that assist in
producing a valid result but also by providing an explicit model
of the dependencies these rules create. Inspecting the state of the
model enables generic algorithms (e.g., for widget enablement) for
user interfaces.

Constraint systems have been studied extensively for use in user
interfaces, mostly for automated widget layout. A large number

of declarative, constraint-based GUI systems have been proposed,
for example, Sketchpad [30], Amulet [20], Garnet [18], as well
as ThingLab I and II, DeltaBlue, and SkyBlue [28]. A survey of
model-based UI design environments for UI construction can be
found in [26]. More recent active projects that support (one-way)
data-flow constraints include the OpenLaszlo framework [22] for
developing rich Internet applications. Constraints in these systems
are mainly used for layout where the simpler one-way constraints
are rather standard, e.g., in many diagram drawing tools [33]. Based
on extensive experience with the Amulet system, its authors con-
clude that it is unlikely that constraint systems will ever be used for
much other than layout [36].

Our experience indicates a more positive picture. Amulet and
the related systems integrate a constraint solver into a general pur-
pose programming language, but the state of the network of func-
tional dependencies is hidden from the programmer, whereas it is
explicitly modeled and made accessible by property models. This,
we believe, is why we can benefit from the constraint system for-
malisms and algorithms, and apply them in an area where previ-
ously their success has been limited.

Regarding enablement logic, the Jade interactive dialog creation
tool for Garnet [37], and similar work by Myers et al. [19], target
the expression of enablement logic using a constraint system. Also
related is work by Frank et. al [8]. These works do not, however,
attempt to devise a generic enablement algorithm. Further, apart
from relieving the programmer from coding explicit enablement
and activation logic, our analysis clearly defines the reasons why
a widget should be enabled/activated or disabled/deactivated. To
improve usability, a user interface could be instrumented to show
these reasons to its user.

8. Conclusions
Code for user interfaces, accounting for substantial portions of
many applications, is typically not reusable and is a notorious
source of software defects. In a large industrial code base (Adobe’s
major desktop application) that we studied, user interface related
code comprised about 30% of all code and contained over 50% of
reported defects. Furthermore, programming user interfaces is one
of the more mundane tasks in software construction—and generally
not high on the list of developers’ favorite tasks.

Increased reuse in the domain of user interfaces can thus no-
tably improve programmer productivity, improve software quality,
and free programmers to work on more rewarding tasks. With a
higher quality of user interfaces, our daily encounters with com-
puter systems can become more productive, more pleasant, and less
frustrating.

This paper describes promising results in a venture to produce
reusable components in the domain of user interfaces.

We further refine property models as an abstraction for repre-
senting variables and their dependencies in command parameter
synthesis tasks. In particular, we formalize the computation of val-
ues for variables in a property model. This computation reveals the
currently active functional dependencies among those variables.
We showed how to use this information to develop generic algo-
rithms for command activation and widget enablement.

The experimental results obtained during the course of commer-
cial software development within a major software company indi-
cate that use of property models leads to significantly increased
productivity, and to a dramatic reduction in the reported defect
count, compared to teams relying on the services of a more tra-
ditional graphical user interface framework.

We continue to study and develop property models further,
to expand the class of user interfaces that property models can
support, and expand the base of use cases. Further, we believe
that the domain of user interfaces, command parameter synthesis in

155

particular, has further algorithms to discover, to allow for more of
the functionality of a high-quality user interface to be implemented
in reusable libraries.

Acknowledgments
This material is based in part upon work supported by the National
Science Foundation under Grant No. CCF-0845861.

References
[1] Apple, Inc. Apple Human Interface Guidelines: User Experience. 1

Infinite Loop, Cupertino, CA 95014, June 2008.
[2] ASL. Adobe Source Libraries. Adobe Systems, Inc., 2005. st-

lab.adobe.com.
[3] C. Benson, A. Elman, S. Nickel, and C. Z. Robertson. GNOME

Human Interface Guidelines 2.2, Mar. 2008. http://library.
gnome.org/devel/hig-book/stable/index-info.html.en.

[4] A. Borning, R. Duisberg, B. Freeman-Benson, A. Kramer, and
M. Woolf. Constraint hierarchies. SIGPLAN Not., 22(12):48–60,
1987.

[5] J. M. Boyer, M. Dubinko, J. Leigh L. Klotz, D. Landwehr, R. Merrick,
and T. V. Raman. XForms 1.0 (Third Edition), Oct. 2007. http:
//www.w3.org/TR/2007/REC-xforms-20071029/.

[6] Apple developer connection: Cocoa. http://developer.apple.
com/cocoa/, Mar. 2009.

[7] E. Feldman. Create user interfaces with Glade. Linux J., 2001(87):4,
2001.

[8] M. R. Frank, J. J. de Graaff, D. F. Gieskens, and J. D. Foley. Building
user interfaces interactively using pre- and postconditions. In CHI
’92: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 641–642, New York, NY, USA, 1992. ACM.

[9] J. Freeman, J. Järvi, J. Smith, M. Marcus, and S. Parent. Proper-
ties of constraint systems of property models. Texas A&M Univer-
sity, Department of Computer Science and Engineering, Parasol Lab-
oratory Technical Report TR09-001. http://parasol.tamu.edu/
publications/, July 2009.

[10] B. N. Freeman-Benson, J. Maloney, and A. Borning. An incremental
constraint solver. Commun. ACM, 33(1):54–63, 1990.

[11] E. Friedman-Hill. Jess 7, Feb. 2008. http://www.jessrules.com/
jess/charlemagne.shtml.

[12] D. Grolaux and P. V. Roy. QTk — an integrated model-based approach
to designing executable user interfaces. In 8th Workshop on Design,
Specification, and Verification of Interactive Systems (DSVIS 2001),
Lecture Notes in Computer Science, Glasgow, Scotland, June 2001.
Springer-Verlag.

[13] J. Järvi, M. Marcus, S. Parent, J. Freeman, and J. N. Smith. Property
models: from incidental algorithms to reusable components. In GPCE
’08: Proceedings of the 7th international conference on Generative
programming and component engineering, pages 89–98, New York,
NY, USA, 2008. ACM.

[14] D. Litman, P. F. Patel-Schneider, A. Mishra, J. Crawford, and D. Dvo-
rak. R++: Adding path-based rules to C++. IEEE Trans. on Knowl.
and Data Eng., 14(3):638–658, 2002.

[15] Microsoft Corporation. Windows Vista UX Guide: User Experi-
ence Guidelines, 2008. http://download.microsoft.com/
download/e/1/9/e191fd8c-bce8-4dba-a9d5-2d4e3f3ec1d3/
uxguide.pdf.

[16] Mozilla. XML user interface language (XUL) 1.0. Mozilla Founda-
tion, Mar. 2006. http://www.mozilla.org/projects/xul/xul.
html.

[17] System.Windows.Forms. http://msdn.microsoft.com/en-us/
library/system.windows.forms.aspx, Mar. 2009.

[18] B. Myers, D. Giuse, R. Dannenberg, B. Zanden, D. Kosbie, E. Pervin,
A. Mickish, and P. Marchal. Garnet: Comprehensive support for

graphical, highly interactive user interfaces. Computer, 23(11):71–85,
Nov. 1990.

[19] B. A. Myers and D. S. Kosbie. Reusable hierarchical command
objects. In CHI ’96: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 260–267, New York, NY, USA,
1996. ACM.

[20] B. A. Myers, R. G. McDaniel, R. C. Miller, A. S. Ferrency,
A. Faulring, B. D. Kyle, A. Mickish, A. Klimovitski, and P. Doane.
The Amulet environment: New models for effective user interface soft-
ware development. Software Engineering, 23(6):347–365, 1997. cite-
seer.ist.psu.edu/article/myers96amulet.html.

[21] B. A. Myers and M. B. Rosson. Survey on user interface program-
ming. In CHI ’92: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 195–202, New York, NY, USA,
1992. ACM.

[22] OpenLaszlo project. http://www.openlaszlo.org.
[23] Parasol Lab, Computer Science, Texas A&M University. Property

Models Research Project’s Home Page, 2009. http://parasol.cs.
tamu.edu/groups/pttlgroup/property-models.

[24] S. Parent. Adobe Property Model Library. Adobe Systems, Inc., 2005.
Part of Adobe Source Libraries, http://stlab.adobe.com.

[25] S. Parent. A possible future for software development. Keynote
talk at the Workshop of Library-Centric Software Design 2006, at
OOPSLA’06, Portland, Oregon, 2006. lcsd.cs.tamu.edu/2006.

[26] P. Pinheiro da Silva. User interface declarative models and develop-
ment environments: A survey. Interactive Systems Design, Specifica-
tion, and Verification, pages 207–226, 2001.

[27] M. Proctor, M. Neale, B. McWhirter, K. Verlaenen, E. Tirelli,
F. Meyer, A. Bagerman, M. Frandsen, G. D. Smet, T. Rikkola,
S. Williams, B. Truit, R. Jain, C. Nagarkar, and D. Ahearn. Drools,
2008. http://www.jboss.org/drools/.

[28] M. Sannella. Skyblue: A multi-way local propagation constraint solver
for user interface construction. In UIST ’94: Proceedings of the 7th
annual ACM symposium on User interface software and technology,
pages 137–146, New York, NY, USA, 1994. ACM.

[29] M. J. Sannella. Constraint satisfaction and debugging for interactive
user interfaces. PhD thesis, University of Washington, Seattle, WA,
USA, 1994.

[30] I. E. Sutherland. Sketchpad: A man-machine graphical communica-
tion system. In DAC ’64: Proceedings of the SHARE design automa-
tion workshop, pages 6329–6346, New York, NY, USA, 1964. ACM.

[31] Qt: A cross-platform application and UI framework. http://www.
qtsoftware.com/products, Mar. 2009.

[32] G. Trombettoni and B. Neveu. Computational complexity of multi-
way, dataflow constraint problems. In IJCAI (1), pages 358–365, 1997.

[33] M. Wybrow, K. Marriott, L. McIver, and P. J. Stuckey. Comparing
usability of one-way and multi-way constraints for diagram editing.
ACM Trans. Comput.-Hum. Interact., 14(4):1–38, 2008.

[34] XAML. XAML: Extensible application markup language. Microsoft
Developer Network (MSDN), 2008. http://msdn.microsoft.
com/en-us/library/ms747122.aspx.

[35] B. V. Zanden. An incremental algorithm for satisfying hierarchies
of multiway dataflow constraints. ACM Trans. Program. Lang. Syst.,
18(1):30–72, 1996.

[36] B. V. Zanden, R. Halterman, B. Myers, R. Miller, P. Szekely,
D. Giuse, D. Kosbie, and R. McDaniel. Lessons learned from users
experiences with spreadsheet constraints in the garnet and amulet
graphical toolkits. ftp://cs.utk.edu/pub/TechReports/2002/
ut-cs-02-488.pdf, May 2002.

[37] B. V. Zanden and B. A. Myers. Automatic, look-and-feel independent
dialog creation for graphical user interfaces. In CHI ’90: Proceedings
of the SIGCHI conference on Human factors in computing systems,
pages 27–34, New York, NY, USA, 1990. ACM.

156

