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Abstract. A long-held goal of software engineering has been the ability to treat
software libraries as reusbale components that can be composed with program-
specific code to produce applications. The object-oriented programming paradigm
offers mechanisms to write libraries that are open for extension, but it tends to
impose intrusive interface requirements on the types that will be supplied to the
library. The generic programming paradigm has seen much success in C++, partly
due to the fact that libraries remain open to extension without imposing the need
to intrusively inherit from particular abstract base classes. However, the static
polymorphism that is a staple of programming with templates and overloads in
C++, limits generic programming’s applicability in application domains where
more dynamic polymorphism is required. In this paper we present the poly<>
library, a part of Adobe System’s open source library ASL, that combines the
object-oriented and generic programming paradigms to provide non-intrusive,
transparent, value-based, runtime-polymorphism. Usage, impact on design, and
implementation techniques are discussed.

1 Introduction

Successful development of robust large scale-software applications depends on upon
the ability to combine application-specific functionality with independently developed
library modules from a variety of sources, with a reasonable amount of application-
specific glue code. To support this activity, modules must remain open for extension but
closed for modification [18]. Object-oriented programming and generic programming
are the two main paradigms available for creating such modules in C++.

In object-oriented programming, libraries typically specify that the types supplied to
the library must be derived from a common abstract base class, providing implementa-
tions for a collection of pure virtual functions. The library knows only about the abstract
base class interface, but can be “extended” to work with new user types derived from
the abstract interface. That is, variability is achieved through differing implementations
of the virtual functions in the derived classes. This is how object-oriented programming
supports modules that are closed for modification, yet remain open for extension. One
strength of this paradigm is its support for varying the types supplied to a module at
runtime. Composability of modules is limited, however, since independently produced
modules generally do not agree on common abstract interfaces from which supplied
types must inherit.



The paradigm of generic programming, pioneered by Stepanov, Musser and their
collaborators [16, 19], is based on the principle of decomposing software into effi-
cient components which make only minimal assumptions about other components, al-
lowing maximum flexibility in composition [7]. C++ libraries developed following the
generic programming paradigm typically rely on templates for the parametric and ad-
hoc polymorphism they offer. Composability is enhanced as use of a library does not
require inheriting from a particular abstract interface. Interfaces of library components
are specified using concepts—collections of requirements analogous to, say, Haskell
type classes [28]. The key difference to abstract base classes and inheritance is that a
type can be made to satisfy the constraints of a concept retroactively, independently of
the definition of the type. Also, generic programming strives to make algorithms fully
generic, while remaining as efficient as non-generic “hand-written” algorithms. Such an
approach is not possible when the cost of any customization is a virtual function call.

Many successful software libraries have been designed and implemented following
the generic programming paradigm [1,2,6,8,22,24,25,27]. We summarize the paradigm
and supporting extensions to C++ in Section 2.

In combining elements of object-oriented programming with those of generic pro-
gramming, we take generic programming as the starting point, retaining its central
ideas. In particular, generic programming is built upon the notion of value types that
are assignable, copy constructible, etc. [7] The behavior expected from value types re-
flects that of C++’s built-in types, like int, double, and so forth. This generally assumes
that types encapsulate their memory and resource management into their constructors,
copy-constructors, assignment operators, and destructors, so that objects can be copied,
and passed as parameters by copy, etc., without worrying about references to their re-
sources becoming aliased or becoming dangling. Value types simplify local reasoning
about programs. Explicitly managing objects on the heap and using pass-by-reference
as the parameter passing mode makes for complex object ownership management (and
object lifetime management in languages that are not garbage collected). Instead, ex-
plicitly visible mechanisms—thin wrapper types like reference_wrapper in the (draft)
C++ standard library [S]—are used when sharing is desired.

We would like to simultaneously enjoy the benefits of both the object-oriented and
the generic programming paradigms: easily composable modules that can support dy-
namic polymorphism. Value semantics and dynamic polymorphism of abstract base
classes are, however, not easily mixed. Indeed, libraries written following the generic
programming paradigm tend to integrate with object-oriented programming only in
trivial ways. Established library idioms of generic programming provide no way to
use concepts to define rich interfaces that simultaneously supporting static and dy-
namic polymorphism. In what follows we present, in stages, the poly<> library sup-
porting construction of applications from composable generic components and use of
dynamic polymorphism at the components’ generic interfaces. We combine the object-
oriented and generic programming paradigms to provide non-intrusive, transparent,
value-based, runtime-polymorphism. The poly<s> library is part of Adobe System’s open
source Adobe Source Library (ASL) [1].

We use an example from the domain of graphical user interfaces (GUI) to motivate
and illustrate our techniques. Adobe’s Eve, a component of ASL, is a layout engine



that can be used to calculate positions for GUI widgets in a dialog. Our experimental
version of Eve (relying on extensions to C++ described below) defines its interface in
terms of concepts. In particular, we define the Placeable concept that requires a measure
operation for obtaining the extents of a widget, and a place operation for effecting the
placement of a widget into certain position in a window. Our layout engine can operate
on different kinds and types of widgets, from the same or from different GUI frame-
works, as long as the concrete widget types are adapted to conform to the Placeable
interface. In some applications, the widget types might be known statically. In other
applications, the layout can consist of varying types of widgets. Ideally, the engine it-
self does not need to concern itself with this distinction. Depending on the needs of the
client of the layout engine, the same engine template can be instantiated either with a
single specific widget type, or with a wrapper type that allows the engine to operate
on an open ended set of widget types. Below, instantiating the engine with HIViewRef
gives an engine statically bound to operate on Mac Carbon [3] widgets; we omit the
definitions that make HIViewRef model Placeable. The second instantiation uses a poly
template, explained in Section 3.4, to create a dynamically polymorphic value type,
akin to an existential type [17].

template <Placeable P> struct layout_engine { ... }

layout_engine<HIViewRef> le;
layout_engine<poly<placeable>> le;

The code in the application assembling the components determines whether to use static
or dynamic polymorphism. The library does not impose this decision on its clients.

Most of the techniques described here are part of ASL, some experimental features
of it. The machinery presented is an extension of the ideas described in [21]. The tech-
niques require the addition of some boilerplate code, but the crucial point is that this
code is external to both to the algorithm library (corresponding to the layout engine
in our example) and to the library types provided to it (the Mac OS X Carbon library
in our example). We will illustrate how such transparent adaptation is possible in the
sections which follow. Section 3.2 indicates where some intrusion to make libraries
poly<>-aware can be used to gain more control when combining static and dynamic
polymorphism.

We present our techniques using C++ extended with “concepts” [10], here referred
to as ConceptC++. ConceptC++ adds constrained templates to C++, and is a likely ex-
tension to the next revision of standard C++. In this article, C++ refers to the language
as specified in its current standard [14].

2 Background: Generic Programming and ConceptC++

Generic programming is a systematic approach to designing and organizing software.
It focuses on finding the most general (or abstract) formulations of algorithms together
with their efficient implementations [16]. Integral to the paradigm is the organization
of constraints on type parameters into concepts, which describe the commonly occur-
ring abstractions in a particular domain. The archetypal example of the results of the



generic programming approach is the Standard Template Library (STL) [27] and its
documentation [4,26].

A brief description of the established generic programming terminology is as fol-
lows: A concept is a collection of requirements on a type (types). We say that a type
(or a tuple of types) models a concept whenever it satisfies all the requirements of
that concept. A concept is said to refine another concept if its set of requirements in-
cludes all requirements of the other concept. The kinds of requirements in a concept are
valid expressions (possibly expressed as function signatures), associated types, seman-
tic constraints, and complexity guarantees. Function signatures specify the operations
that must be defined for the modeling type(s). The associated types of a concept specify
mappings from the modeling type(s) to other collaborating types (such as the mapping
from a container to the type of its elements).

C++ templates are unconstrained. Generic C++ libraries therefore describe concepts
only in the library documentation, and the constraints on type parameters of generic
algorithms as part of algorithms’ documentation. ConceptC++ makes concept descrip-
tions and type parameter constraints known to the compiler, to enable modular type-
checking of templates. Type-checking in ConceptC++ concerns only with the syntactic
requirements of concepts.

The central language construct of ConceptC++ is concept, collecting a set of require-
ments on a type (or types). For example, the following concept LessThanComparable
requires that the “less than” operator, <, is defined for any type that models the concept:

concept LessThanComparable<typename T> {
bool operator<(T, T);

}

C++ allows defining the operator < as a member or as a non-member function; for some
types it comes built-in. Concepts are not concerned with how the operator has been
defined: any means is adequate to satisfy the requirement.

ConceptC++ requires an explicit declaration to establish that a particular type (or
a parametrized class of types) is a model of a concept. These declarations are called
concept maps. The following two declarations state that the int and complex<double>
types are models of the LessThanComparable concept:

concept_map LessThanComparable<int> { }

concept_map LessThanComparable<complex<double> > {
bool operator<(complex<double> a, complex<double> b) { return abs(a) < abs(b); }

}

The two definitions differ in how LessThanComparable’s requirements are satisfied.
For int, the built-in < operator for integers provides the required implementation; for
complex<double>, the definition in the body of the concept map is used. For a concept
map to type check, for each of its requirements an implementation must be present in
the concept map’s body, or found in the scope where the concept map is defined.

Concept maps can be templates. In the following, all instances of the standard pair
template are declared to be LessThanComparable:

template <typename T, typename U>
requires LessThanComparable<T>, LessThanComparable<U>



concept_map LessThanComparable<pair<T, U> > {
bool operator<(const pair<T, U>& a, const pair<T, U>& b) {
return a.first < b.first || (!/(b.first < a.first) && a.second < b.second);

}
}

The simple generic function min_element below uses the LessThanComparable con-
cept as a constraint. Constraints on type parameters are stated in the requires clauses of
templates. Bodies of templates are type-checked assuming the constraints in the requires
clauses are satisfied. Correspondingly, at template instantiation, the type-checker checks
that the template arguments satisfy the constraints in the requires clauses.

template <typename Iter>
requires Forwardlterator<lter>, LessThanComparable<lter::value_type>
Iter min_element(lter first, Iter last) {

Iter best = first;

while (first = last) { if (xfirst < xbest) best = first; ++first; }

return best;

}

The Forwardlterator concept that appears in the constraints of min_element is shown
in Figure 1. This concept provides basic iteration capabilities. The dereferencing op-
erator * gives the value that an iterator refers to. The ++ operator advances the iterator
to the next element. Equality comparison is used to decide when the end of the se-
quence is reached. Requirements for the operators == and != are not stated directly in
the body of Forwarditerator, but are obtained through refinement of another concept
EqualityComparable (not shown). Syntax of refinement is that of inheritance between
classes. The associated type value_type denotes the type of the value that the iterator
refers to. A requires clause in the body of a concept can be used to place additional
constraints on the parameters or associated types of a concept. Here, value_type must
model CopyConstructible, which is one of the (draft) standard concepts and has its ex-
pected meaning. Examples of models of Forwardlterator include all pointer types and
the iterator types of standard containers.

concept Forwardlterator<typename lter> : EqualityComparable<lter>, CopyConstructible<lter> {
typename value_type;
requires CopyConstructible<value_type>;

value_type& operatorsx(lter);
Iter& operator++(lter&);
Iter operator++(lter&, int);

Fig. 1. The Forwardlterator concept (simplified from the one in the STL).

The min_element algorithm works for any sequence of values defined as a pair of
iterators, as long as the iterator type is a model of the Forwarditerator concept and the



iterator’s value type is a model of LessThanComparable. Assuming the concept map
definition for complex<double> we showed above, the following call satisfies the con-
straints of min_element. The invocation of operator < in the body of min_element then
calls the definition given in the concept map.

vector<complex<double> > cd;
/1 fill cd with values
complex<double> smallest = min_element(cd.begin(), cd.end());

A concept definition can be preceded with the keyword auto to signify that no ex-
plicit concept map is necessary to establish a models relation between a type and a
concept—structural conformance to the requirements suffices. Simple concepts with
only a few requirements are typically defined as auto. Concept maps can be written
explicitly for auto concepts as well.

ConceptC++ provides a syntactic shortcut for succinctly expressing constraints di-
rectly in the template parameter list: instead of the keyword typename, a concept name
then precedes a template parameter. The following function signature uses the shortcut
to constrain lter to be a model of Forwardlterator:

template <Forwardlterator lter> requires LessThanComparable<lter::value_type>
Iter min_element(lter first, lter last);

Same shortcut works for associated types. The declaration CopyConstructible value_type;
can replace the following lines in Figure 1:

typename value_type;
requires CopyConstructible<value_type>;

For a detailed description of the language features of ConceptC++, see [10, 11].

3 Development

In these sections, we present the poly library, comprising machinery for creating non-
intrusive runtime-polymorphic value wrappers, parametrized by concept. We discuss
several use cases, including non-intrusive heterogeneous containers and the retroactive
addition of runtime polymorphism to a templated interface of a generic library. Except
for code to fully leverage concept refinement, discussed in Section 3.2, the machinery
does not intrude upon the generic library or upon the types to be used as inputs to the
library routines.

Programmers often are faced with the need to maintain heterogeneous collections of
related objects. In the object-oriented paradigm, a container of pointers to abstract base
classes is the preferred implementation technique. However this requires that the ob-
jects to be stored must inherit from a particular base class. We maintain that the choice
of whether an object will be used polymorphically—with a particular fixed interface
specified by a base class—is not one which should be made at class definition time.

We expand on the generic layout engine example introduced in Section 1 to illustrate
our use cases. Figure 2 shows the definition of the engine, as a class template that can
be instantiated with any type that models the Placeable concept:



concept Placeable <typename T> : Copyable<T> {

void measure(T& t, extents_t& result);
void place(T& t, const place_data_t& place_data);

}

The append member function adds widgets to the a layout “problem”. The solve mem-
ber function uses the measure operation from Placeable to query the extents of each
widget, calculates a solution satisfying the layout constraints (not shown), and finally
invokes the Placeable’s place operation to inform each widget of its calculated location.
The three vectors placeable_m, extents_m, place_data hold, respectively, the widgets to
be placed, their extents, and ultimately the positioning information for the widgets, as
computed by the layout engine.

template <Placeable P>
struct layout_engine {
void append(P placeable) { placeables_m.push_back(placeable); }

void solve() {
extents_m.resize(placeables_m.size());

for(inti = 0; i |= placeables_m.size(); ++i) measure(placeables_m(i], extents_m[i]);
// *solve” layout constraints and update place_data_m

for(inti =0; i |= placeables_m.size(); ++i) place(placeables_m(i], place_data_m([i]);
1
vector<extents_t> extents_m;

vector<P> placeables_m;
vector<place_data_t> place_data_m;

Fig. 2. A simplified layout engine modeled after Eve.

The layout engine is a generic collection where the type of the values stored in the
collection is parametrized. We can instantiate the engine in a straightforward manner
to accept widgets of a particular type, e.g. as layout_engine<HIViewRef>, provided that a
suitable concept map exists. In the code below, we omit the definitions of the measure
and place functions that contain the Mac Carbon specific code for measuring of extents
and placing of widgets:

void measure(HIViewRef& t, extents_t& result) { ... };

void place(HIViewRef& t, const place_data_t& place_data) { ... };

concept_map Placeable<HIViewRef> {}

In this case, the layout engine can be viewed as a homogeneous container of HIViewRefs.

In some cases, however, it is desirable to use the engine with more than one (unrelated
type). That is, we sometimes wish to view the engine as a heterogeneous container. To



support this in a non-intrusive manner means that the code of Figure 2 and the Placeable
concept must remain unchanged.

To use a template interface in a runtime polymorphic manner, an abstract class (and
some boilerplate) must be created for each concept in the interface—no further adapta-
tion is required at the individual class or function level. We introduce the poly library
machinery in stages. We begin with a concrete type modeling the Placeable concept,
then refactor it through a series of stages until all of our design goals are achieved. Fi-
nally, Section 3.4 presents an outline of the general purpose poly<> library that seeks
to encapsulate the boilerplate code required when creating non-intrusive, runtime poly-
morphic, value classes. In its final form then, the instantiation of the heterogeneous
layout engine is written as layout_engine<poly<placeable>>. The placeable type defines
a member function for each function requirement of the Placeable concept, the poly
template integrates this definition with the supporting machinery.

3.1 Implementing polymorphic value types

The ability to copy values is a prevalent requirement for type parameters of generic
functions. specifically, this means that the types have a public copy constructor and an
assignment operator. We capture these requirements in the Copyable concept:

concept Copyable <typename T> : std::CopyConstructible<T>, std::Assignable<T> {}

Users of the layout engine must instantiate it with a type that is a model of Placeable—
and thus Copyable as well, since Placeable refines Copyable. We demonstrate with a
minimal Placeable type, Widget, that we carry over to further examples. Here, the task
of the concept map is to map non-member functions to member functions.

struct Widget {
Widget& operator=(const Widget&) { ... }
Widget(const Widget&) { ... }
void measure(extents_t& result) { ... }
void place(const place_data_t& place_data) { ... }

b

concept_map Placeable<Widget> {
void measure(Widget& x, extents_t& result) { x.measure(result); }
void place(Widget& x, const place_data_t& place_data) { x.place(place_data); }

}

With the concept map for Widgets in place, the instantiation layout_engine<Widget> is
possible. Static polymorphism is the name of the mechanism that allows users to instan-
tiate the engine with Widget or with HIViewRef. The widget type accepted by the layout
engine’s append function is fixed (either to HIViewRef or Widget), and cannot vary at
runtime.

In C++, runtime polymorphism is achieved through base class pointers or references,
not values. A possible approach to allow the layout engine to work with both HIViewRefs
and Widgets at the same time would to define an abstract class corresponding to the
Placeable concept, and make pointers to that base class models of Placeable. In gen-
eral, however, pointers go hand in hand with heap allocation, lifetime management, and



shared reference issues. We can instead retain value semantics by separating concrete
types into several components, following the Bridge pattern [9]. We begin by replacing
the Widget class with the “handle” and “body” classes in Figure 3.

struct Placeablelnterface {
virtual void measure(extents_t& result) = 0;
virtual void place(const place_data_t& place_data) = 0;
virtual void assign(const Placeablelnterface& x) = 0;
virtual Placeablelnterfacex clone() const = 0;
virtual ~Placeablelnterface() {}
b
struct Widgetimplementation : Placeablelnterface {
void measure(extents_t& result) { ... }
void place(const place_data_t& place_data) { ... }

void assign(const Placeablelnterface& x) { ... }
Placeablelnterface* clone() const { ... }

// data members
b
struct PlaceableHandle {

void measure(extents_t& result) { interface_m—>measure(result); }
void place(const place_data_t& place_data) { interface_m—>place(place_data); }

PlaceableHandle(const PlaceableHandle& x) : interface_m(x.interface_m—x>clone()) {}
PlaceableHandle(const Widgetimplementation& x)

: interface_m(new Widgetimplementation(x)) {}
PlaceableHandle& operator=(const PlaceableHandle& x)

{ interface_m—>assign(xx.interface_m); return xthis; }

std::scoped_ptr<Placeablelnterface> interface_m;
b
concept_map Placeable<PlaceableHandle> {

void measure(PlaceableHandle& x, extents_t& result) { x.measure(result); }
void place(PlaceableHandle& x, const place_data_t& place_data) { x.place(place_data); }

}

Fig. 3. The Widgetimplementation, Placeablelnterface, and PlaceableHandle classes.

The body class consists of two parts: Placeablelnterface and Widgetimplementation.
The former is the runtime polymorphism layer, the latter encapsulates code specific to
the concrete widget type. The handle class PlaceableHandle behaves like a Placeable
value, supporting copy construction and assignment. It delegates all calls to its mem-
ber functions to Placeablelnterface. Copying and assignment of Placeablelnterface are
implemented with clone and assign member functions.

With this use of the Bridge pattern we have achieved value-based runtime polymor-
phism, but with the cost of intruding upon the Widget type. We can rectify this with



the help of templates. Instead of reimplementing Widget, we define a generic wrapper
(Placeablelmplementation) for all Placeable widget types. We also change the handle’s
constructor to accept any Placeable type, and wrap it with Placeablelmplementation. The
new configuration is shown in Figure 4.

template <Placeable T>
struct Placeablelmplementation : Placeablelnterface {
void measure(extents_t& result) { Placeable<T>::measure(placeable_m, result); }
void place(const place_data_t& place_data)
{ Placeable<T>::place(placeable_m, place_data); }

void assign(const Placeablelnterface& x);

Placeablelmplementation(const T& x) : placeable_m(x) {}
Placeablelmplementation* clone() const
{ return new Placeablelmplementation<T>(placeable_m); }

T placeable_m;
b

struct PlaceableHandle {

template <typename T>
PlaceableHandle(const T& x) : interface_m(new Placeablelmplementation<T>(x)) {}

Fig.4. A generic ‘“handle-body” class bundle for Placeable types. The only change
to PlaceableHandle class from Figure 3 is making the constructor a template. The
Placeablelmplementation template implements its member functions by delegating to an ar-
bitrary wrapped concrete Placeable type. The definitions of Placeablelnterface and the concept
map for PlaceableHandle are unchanged, and not shown.

With concept maps, any type (with suitable capabilities) can be made to model
Placeable, and Placeablelmplementation can wrap any Placeable type. Adaptation of wid-
get types first to the layout engine’s interface and then to be usable as a run-time poly-
morphic value in that interface, is thus completely transparent and non-intrusive. The
following code illustrates:

layout_engine<PlaceableHandle> le;
HWND x; Widget w;

le.append(x); le.append(w);
// equivalent, via implicit construction, to le(PlaceableHandle(x)), etc.

3.2 Refinement

So far we have achieved a form of non-intrusive value-based runtime-polymorphism:
we can wrap different placeable types inside of an external PlaceableHandle template. In
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this way a single instance of a generic algorithm can support types unknown at compile
time. This section extends our solution with the dynamic counterparts of the concept
refinement relation and with overloading based on concepts.

Some widgets can only provide accurate information on their extents with a two-
pass measurement. Examples include text boxes where the justified height of the text
depends on the width. To support multi-pass measurement, we define the following
concept as a refinement of Placeable:

concept PlaceableTwopass <typename T> : Placeable<T> {
void measure_vertical(T& t, extents_t& horizontal_result, const place_data_t& place_data);

}

ConceptC++ supports “concept-based” overloading, where the entailment relation
between constraints is taken into consideration when selecting the best overload [15].
For example, we show two overloads for the adjust_measurement function below, first
for Placeable types, the second for types that additionally model PlaceableTwopass.
These functions are called from the layout engine’s solve routine. In our simplified
example, assume that adjust_measurement is empty for Placeable types, and that it ob-
tains and exploits the second pass vertical measurement for PlaceableTwopass types.
Further details of the implementations of the functions are not important here.

template <Placeable T>
void adjust_measurement(const T& t, extents_t& e, const place_data_t& m) {}

template <PlaceableTwopass T>
void adjust_measurement(const T& t, extents_t& e, const place_data_t& m) {

measure_vertical(t, e, m);

}

When all types are statically known, the matching function with the most specific con-
straints is selected. Thus far, we have only defined a handle class for Placeable types,
and if we wrap a widget supporting two-pass placement in a Placeable handle, the over-
loads for the more refined concept will not apply. If the bundle of classes in Figure 4
is extended according to the concept refinement relation, we can select a more refined
handle class to wrap a client type.

Figure 5 shows the refined class bundle. The PlaceableTwopassinterface class inher-
its from the Placeablelnterface and adds the new virtual function measure_vertical. The
PlaceableTwopassimplementation provides implementations for the pure virtual func-
tions of PlaceableTwopassinterface. These implementations again delegate to the re-
fined concept. Some repetition is necessary here: rather than only implementing the new
member functions of PlaceableTwopassinterface, it is necessary to implement those, and
all member functions that PlaceableTwopassinterface obtains via inheritance. One rea-
son why the repetition is necessary is that it is not possible to parametrize over concept
names in ConceptC++. The role of PlaceableTwopassHandle is exactly analogous to that
of PlaceableHandle, and of course a concept map is necessary to make the new handle
type a model of PlaceableTwopass.

This solution is sufficient if we can use either one of the handles for all widgets
in a given layout task. If, however, some widgets do not support two-pass layout, the
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struct PlaceableTwopassinterface : Placeablelnterface {
virtual PlaceableTwopasslinterfacex clone() const = 0;
virtual void measure_vertical(extents_t& horizontal_result,
const place_data_t& place_data) = 0;
b
template <typename T>
struct PlaceableTwopassimplementation : PlaceableTwopassinterface {
void measure(extents_t& result)
{ PlaceableTwopass<T>::measure(placeable_twopass_m, result); }
void place(const place_data_t& place_data)
{ PlaceableTwopass<T>::place(placeable_twopass_m, place_data); }
void measure_vertical(extents_t& horizontal_result, const place_data_t& place_data)
{ PlaceableTwopass<T>::measure_vertical(placeable_twopass_m,
horizontal_result, place_data); }

void assign(const Placeablelnterface& x);
PlaceableTwopassimplementationx clone() const;
PlaceableTwopassimplementation(const T& x) : placeable_twopass_m(x) {}

T placeable_twopass_m;
b
struct PlaceableTwopassHandle {
void measure(extents_t& result) { interface_m—>measure(result); }
void place(const place_data_t& place_data)
{ interface_m—>place(place_data); }
void measure_vertical(extents_t& horizontal_result,
const place_data_t& place_data)
{ interface_m—>measure_vertical(horizontal_result, place_data); }

template <typename T>
PlaceableTwopassHandle(const T& x)
: interface_m(new PlaceableTwopassimplementation<T>(x)) {}

PlaceableTwopassHandle& operator=(const PlaceableTwopassHandle& x)
{ interface_m.reset(x.interface_m—x>clone()); return xthis; }
PlaceableTwopassHandle(const PlaceableTwopassHandle& x)
: interface_m(x.interface_m—x>clone()) {}

std::scoped_ptr<PlaceableTwopassinterface> interface_m;
b

concept_map PlaceableTwopass<PlaceableTwopassHandle> {
void measure(PlaceableTwopassHandle& x, extents_t& result);
void place(PlaceableTwopassHandle& x, const place_data_t& place_data);
void measure_vertical(Placeable TwopassHandle& x, extents_t& horizontal_result,
const place_data_t& place_data);

Fig. 5. Refining the “handle-body” class bundle.
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layout engine must be instantiated with PlaceableHandle, and no overloads for two-pass
layout will be found. To summarize, we have presented a non-intrusive way to make
a “static” library interface support run-time polymorphism, in the sense that multiple
widget types can be supported simultaneously. The static type information is also used
in interfaces within the library itself, between different components of the library. The
runtime polymorphism layer that we provided for a particular “entry point” is not in
effect after that entry point. A single handle provides a runtime dispatching layer from a
single concept to its models—the concept is still selected statically and thus refinement
between concepts is based purely on static type information.

As ConceptC++’s overload resolution is based on the static type of the arguments, it
is not possible to non-intrusively inject runtime polymorphism to internal library inter-
faces that use overloading, such as the adjust_measurement functions called from solve.
Hence, if we wish to support a form of refinement where the dynamic type affects
which overloaded function to select, the dynamic type information has to be recovered
with some form of “type casing”. This means that the solution becomes intrusive to the
generic library. The generic library, layout_engine in this case, must be written to sup-
port this behavior explicitly. The library must know the handle class that corresponds
to each concept it uses.

We demonstrate with the adjust_measurement function. We provide a new overload
that matches handle types, detects the dynamic type, and dispatches based on it. This
function forwards to the previously shown adjust_measurement functions. The forward-
ing call is qualified with the namespace of the layout library; the new overload is placed
in a different namespace, together with the handle and body classes. Unqualified calls
(e.g. from solve) to adjust_measurement see the entire overload set because of C++’s
argument dependent lookup. This arrangement is one way to avoid the new overload to
match again leading to infinite recursion.

void adjust_measurement(PlaceableHandle& t, extents_t& e, const place_data_t& m) {
if (PlaceableTwopassHandlex p = PlaceableTwopass_cast<PlaceableTwopassinterfacex>(&t))
layout::adjust_meaurement(xp, e, m);
else
layout::adjust_meaurement(t, e, m);

PlaceableTwopassHandle& PlaceableTwopass_cast(PlaceableHandle& x) {
dynamic_cast<PlaceableTwopassinterface&>(xx.interface_m);
return reinterpret_cast<PlaceableTwopassHandle&>(x);

}

The PlaceableTwopass_cast function behaves like dynamic_cast: it returns a null
pointer if casting is not successful. When casting from a refined handle to a base han-
dle, we rely on the fact that a handle class consists exactly of a pointer to a class de-
rived from the corresponding interface class. For example, PlaceableHandle’s place()
operation is implemented in terms of Placeablelnterface by jumping to the fourth en-
try in the vtable. Since PlaceableTwopassinterface inherits from Placeablelnterface, the
vtable slots will align, and we can treat PlaceableTwopassHandle as fully substitutable
for PlaceableHandle. Of course a static cast will not work for this purpose, since the type
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system cannot verify this layout compatibility; here, we know by construction that the
cast is safe.

A cast from a base handle to a refined handle will only succeed if the dynamic
type of the base handle’s Interface object is a derived from the refined handle’s In-
terface type. Thanks to the requirement that refined interfaces must inherit from base
interfaces, we can employ dynamic_cast to determine whether this type requirement is
satisfied. We implement multiple forms of poly_cast, corresponding tho those offered
by to dynamic_cast: a reference form which throws when attempting a downcast to an
inappropriate type, and a pointer form which returns NULL upon such failure.

3.3 The small-object optimization

In the sections above, we demonstrated how to construct polymorphic value objects,
with the help of the PlaceableHandle, Placeablelnterface, and Placeablelmplementation
classes. Under the hood, we employed inheritance techniques from object-oriented de-
sign in a traditional manner. In particular, PlaceableHandle allocates the body class on
the heap using operator new. This section presents an optimization that avoids heap al-
locations entirely when certain conditions are met. We refer to this optimization as the
small-object optimization. For earlier work in this area see [23].

In small-object optimization we maintain a small buffer in the PlaceableHandle it-
self, in which small Placeablelmplementation<T> objects can be stored directly. Space is
allocated from the free store only for objects too large to fit into this buffer. Also, types
that do not have a non-throwing default constructor must use free store.

We encapsulate the “local” (small objects stored in the handle) and “remote” (for
heap-allocated objects) storage policies in the class templates shown in Figure 6—
the former in PlaceableStateLocal, the latter in PlaceableStateRemote. We modify the
Placeablelmplementation class to inherit from one of these classes according to whether
the criteria for the small-object optimization are met or not. The choose_storage meta-
function, in Figure 7, carries out this selection based on the size of the stored object.

In the case of a small object, we do not need the pointer (interface_m member in
Figure 3) from the handle class to the implementation class, since the implementation
object resides in the handle’s buffer (the data_m member). Alternatively, for large ob-
jects stored on the heap, the data_m buffer can store the pointer to the heap allocated
implementation object. To uniformly access the interface object regardless of how it
is stored we encapsulate access in PlaceableHandle as shown below. (The rest of the
changes to PlaceableHandle are straightforward, see Figure 8).

typedef double storage_t[2];

struct PlaceableHandle {

Placeablelnterface& interface_ref() { return static_cast<Placeablelnterface>(storage()); }
const Placeablelnterface& interface_ref() const
{ return static_cast<const Placeablelnterface >(storage()); }
void storage() { return &data_m;}
const void storage() const { return &data_m; }
storage_t data_m;

14



template <typename T>
struct PlaceableStateLocal : Placeablelnterface {
typedef T value_type;

void assign(const Placeablelnterface& x) ;

const value_type& get() const { return value_m;}
value_type& get() { return value_m;}

PlaceableStatelLocal() {}
explicit PlaceableStateLocal(const value_type& x) : value_m(x) {}

T value_m;

b

template <typename T>

struct PlaceableStateRemote : Placeablelnterface {
typedef T value_type;

void assign(const Placeablelnterface& x);

const value_type& get() const { return xvalue_ptr_m; }
value_type& get() { return xvalue_ptr_m; }

PlaceableStateRemote() : value_ptr_m(NULL) {}
explicit PlaceableStateRemote(const value_type& x) { value_ptr_m = new value_type(x); }

~PlaceableStateRemote() { delete value_ptr_m;}

Tx value_ptr_m;

Fig. 6. The small-object optimization: storage policy classes.
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By a the same token, we can no longer assume that our concrete Placeable ob-
ject is accessible as placeable_m inside of Placeablelmplementation. Instead we modify
Placeablelmplementation as in Figure 7 to use use the get member function inherited
from its base storage class. Then, for example, the measure function becomes:

template <typename T>
struct Placeablelmplementation : choose_storage_type<T>::type {

void measure(extents_t& result) { Placeable<T>::measure(this—>get(), result); }

The constructors, destructor, and clone function are also impacted by the two differ-
ent storage policies. For example, the clone call is modified to use the placement form
of the new operator, placing the result in the storage provided by the PlaceableHandle
class.

After applying the small-object optimization, we are left with the arrangement of
classes shown in UML in Figure 9.

3.4 Commonality/Variability Analysis

The final stage of our development is to perform a commonality/variability analysis,
then to factor the common portions of our code away from the specific details of
Placeable, to produce the outline of a generic non-intrusive, value-based runtime poly-
morphic library, poly<>.

The starting point is the arrangement of classes in Figure 9. We transform the
Placeable-specific artifacts into the outline of the poly<> library, by splitting the in-
terface, implementation, and handle classes into Placeable-independent and Placeable-
specific pieces, parameterizing classes and introducing classes as needed. We begin
with Placeablelnterface.

The Placeablelnterface specified the measure, place, clone, assign, and destructor
operations. Only the first two of those are Placeable-specific, leading to a new version
of Placeablelnterface with only those two functions. We introduce a new class template,
poly_interface, which inherits from two classes: from its template parameter, in our case
Placeablelnterface, and from a new interface, value_interface, containing the Placeable-
independent operations clone(), assign(), and the virtual destructor, as shown below:

struct Placeablelnterface {
virtual void measure(extents_t& result) = 0;
virtual void place(const place_data_t& place_data) = 0;
b
struct value_interface {
virtual value_interfacex clone(void=) const = 0;
virtual void assign(const value_interface& x) = 0;
virtual ~value_interface() {}
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typedef double storage_t[2]; / 8 bytes for vtable ptrs, 8 bytes for storage.

template<typename T, int N=sizeof(storage_t)>
struct is_small {
enum { value = sizeof(T) <= N &&
std::has_nothrow_constructor<typename T::value_type>::value };
|3
template <typename ConcreteType>
struct choose_storage_type :
boost::mpl::if_<is_small<PlaceableStateLocal<ConcreteType> >,
PlaceableStateLocal<ConcreteType>,
PlaceableStateRemote<ConcreteType> > {};

struct Placeablelnterface {
virtual Placeablelnterface* clone(voidx* storage) const = 0;

}

template <typename T>
struct Placeablelmplementation : choose_storage_type<T>::type {
typedef typename choose_storage_type<T>::type storage_type;

void measure(extents_t& result) { Placeable<T>::measure(this—>get(), result); }
void place(const place_data_t& place_data)
{ Placeable<T>::place(this—>get(), place_data); }

Placeablelmplementationx clone(voidx* storage) const
{ return new (storage) Placeablelmplementation(this—>get()); }

Placeablelmplementation(const T& x) : storage_type(x) {}
Placeablelmplementation() : storage_type() {};

13

Fig.7. The small-object optimization: Interface and Implementation. Placeablelnterface is un-
changed except for the clone function that now needs a parameter to indicate where to clone the
object.
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struct PlaceableHandle {

void measure(extents_t& result) { interface_ref().measure(result); }
void place(const place_data_t& place_data) { interface_ref().place(place_data); }

PlaceableHandle(const PlaceableHandle& x) { x.interface_ref().clone(storage()); }
~PlaceableHandle() { interface_ref().~Placeablelnterface(); }

template <Placeable T>
explicit PlaceableHandle(const T& x) {
new (storage()) Placeablelmplementation<T>(x);

}

PlaceableHandle& operator=(const PlaceableHandle& x) {

if (x.type_info() == type_info())
interface_ref().assign(x.interface_ref());

else {
interface_ref().~Placeablelnterface();
x.interface_ref().clone(storage());

1

return xthis;

}

Placeablelnterface& interface_ref()
{ return xstatic_cast<PlaceableInterfacex*>(storage()); }

const Placeablelnterface& interface_ref() const
{ return xstatic_cast<const Placeablelnterface *>(storage()); }

voidx storage() { return &data_m; }
const voidx storage() const { return &data_m; }

storage_t data_m;

Fig. 8. The small-object optimization: Handle.

18



PlaceableHandle

data_m

Placeablelnterface

clone()

measure() “lassign()
place() measure()
operator=() place()
_‘_&'"""1 4‘_&'"""1
e ——— 1 e ——— 1
PlaceableStateLocal PlaceableStateRemote
value_m: T value_ptr_m: T*
assign() assign()
get(): T get()

lr {OR}

Placeablelmplementation

clone()
measure()
place()

Fig. 9. UML static structure diagram for the Placeable wrapper class with the small-object opti-
mization

template <typename |> // Here | will be Placeablelnterface
struct poly_interface : value_interface, | {

typedef interface_type |;
b

The handle class can now refer to an instantiation of the poly_interface class template as
poly_interface<Placeablelnterface>, instead of the Placeable-specific Placeablelnterface.

The local and remote storage classes in Figure 9 were only Placeable-specific in
as much as they inherited from Placeablelnterface. We can remove this specificity by
employing parametrized inheritance—we add a template parameter for the interface
class from which they are to inherit:

template <typename T, typename Interface>
struct poly_state_local : poly_interface<Interface> {
typedef T value_type;
typedef Interface interface_type;

|5

template <typename T, typename Interface>

struct poly_state_remote : poly_interface<Interface> {
typedef T value_type;
typedef Interface interface_type;
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We omit the unchanged bodies of the storage class templates.

Having removed application-specific code from the interface and storage classes,
we next focus on the implementation class. The poly_implementation class below im-
plements the clone function, instead of requiring that from the Placeablelmplementation
class.

template <typename Implementation>

struct poly_implementation : Implementation {
typedef typename Implementation::value_type value_type;
typedef typename Implementation::interface_type interface_type;

poly_implementation(const value_type& x) : Implementation(x){ }
poly_instance(): Implementation() { }

value_interfacex* clone(voidx storage) const
{ return new (storage) poly_implementation(this—>get()); }

Finally, we turn our attention to refactoring the PlaceableHandle class, which com-
prises Placeable-specific delegating functions, a storage buffer and protocol for access-
ing it, and construction, assignment and destruction protocol. As with our other artifacts,
we factor out the Placeable-specific delegating functions into a new class, placeable in
Figure 11 (note the lower-case spelling), and a base class template, poly_base, encap-
sulating the boilerplate functionality, in Figure 10.

We now wrap the handle in a final layer to be able to refactor PlaceableTwopass_cast
as poly_cast:

template <class UserConceptRep>
class poly : public UserConceptRep {
public:
template <typename T> explicit poly(const T& s) : UserConceptRep(s) {}
b
template <typename T, typename U>
T poly_cast(poly<U>& x) {
typedef typename boost::remove_reference<T>::type target_type;
typedef typename target_type::Interface target_interface_type;
if(!x.template is_dynamic_convertible_to<target_interface_type>())
throw bad_cast(typeid(poly<U>), typeid(T));
return reinterpret_cast<T>(x);

This completes are description of the structure of the poly library. With our library,
programmers wishing to create runtime polymorphic value wrappers must complete
three tasks. For example, three responsibilities must be carried out in order for the li-
brary to generate the Placeable-related classes which we wrote by hand above. The
wrapper-author must provide the placeable class containing Placeable-specific delega-
tion routines, as in Figure 11. They must also supply the Placeablelnterface class, as
in the beginning of this section, and the Placeablelmplementation class template. Once
these tasks have been carried out, the wrapper class is available as poly<placeable>.
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template <typename |, template <typename> class Instance>
struct poly_base {

template <typename T, template <typename> class U>
friend struct poly_base;

typedef poly_interface<I> interface_type;
typedef | Interface;

// Construct from value type
template <typename T>
explicit poly_base(const T& x,
typename std::disable_if<std::is_base_of<poly_base, T> >:itypex = 0);

/I Construct from related interface (may throw on downcast)
template <typename J, template <typename> class K>
explicit poly_base(const poly_base<J, K>& x,
typename std::enable_if<is_base_derived_or_samexl, J> >:typex dummy = 0);

poly_base(const poly_base& x);

friend inline void swap(poly_base& x, poly_base& y);
poly_base& operator=(const poly_base& x);
~poly_base();

template <typename J, template <typename> class K>

static bool is_dynamic_convertible_from(const poly_base<d, K>& x);
template <typename J>

bool is_dynamic_convertible_to() const;

const std::type_info& type_info() const;

template <typename T> const T& cast() const;

template <typename T> T& cast();

template <typename T> bool cast(T& x) const;

template <typename T> poly_base& assign(const T& x);
/I Assign from related (may throw if downcastisng)

template <typename J, template <typename> class K>

typename std::enable_if<is_base_derived_or_samex<l, J> >::itype

assign(const poly_base<J, K>& x);

const interface_type+ operator—>() const;

interface_typex* operator—>();

interface_type& interface_ref();

const interface_type& interface_ref() const;

void+ storage();

const voidx storage() const;

implementation::storage_t data_m;

Fig. 10. The poly_base class template.
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struct placeable : public poly_base<Placeablelnterface, Placeablelmplementation> {
template <typename T>
explicit placeable(const T& s)
: poly_base<poly_placeable_interface, poly_placeable_instance>(s) {}

void measure(extents_t& result) { interface_ref().measure(result); }
void place(const place_data_t& place_data) { interface_ref().place(place_data); }

X

Fig. 11. The placeable class.

4 Discussion and Conclusions

Modern software applications development demands the ability to combine application-
specific functionality with independently developed library modules from a variety of
sources. Purely object-oriented libraries can be written to support multiple types that
are unknown at compile-time (dynamic polymorphism). However, such libraries suffer
from composability limitations, since they require that the types that are to extend the
library (intrusively) inherit from particular abstract base classes. Generic libraries, on
the other hand, are highly composable but offer no support for dynamic polymorphism.
This paper described poly<>, a multi-paradigm library that gives programmers a means
to support non-intrusive runtime polymorphism, parametrized by concept. We discussed
the implementation of the library in stages, contrasting our techniques to other popu-
lar idioms in the generic programming, object-oriented programming, and the design
patterns communities. We used these ideas to demonstrate how to create non-intrusive
heterogeneous containers, and how to retroactively add runtime polymorphism to a tem-
plated interface of a generic library. The full version of a poly<> library, similar to the
version discussed in this paper, can be found at http://opensource.adobe.com. That
version is C++ 2003 compatible, and thus uses various library techniques to emulate
concepts.

The notion of heterogeneous containers of polymorphic value types has been ap-
proached by others. The any library [12, 13] enables a similar encapsulation of value
types: when wrapped inside the any class template, values of varying types can be han-
dled uniformly. The any library, however, does not support directly operating with val-
ues wrapped in any—to apply an operation to such a value, it is necessary to first unwrap
the value and explicitly recover its type. Our poly<> library is parametrized over the
concept/interface that the wrapped values must support. In other words, if empty is an
empty interface, poly<empty> corresponds to any. Nasonov’s dynamic any library [20]
resembles our poly, but takes each allowed operation signature as a distinct template
parameter. Neither any nor dynamic any handle the analogue of concept refinement.
Our poly<> is essentially a type constructor for defining existential types [17], where
the hidden type is constrained to be a model of a particular concept. Haskell’s "forall"
construct serves a similar purpose: it allows the definition of types with a hidden part
constrained to be a type belonging to a given type class, or classes.
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Future work remains, to improve the integration of dynamic polymorphism to generic
programming. ConceptC++ supports multi-parameter concepts. In this paper, however,
we only discussed the dynamic representation of single parameter concepts. Allow-
ing more than one parameter vary independently at run-time leads to ambiguity issues
well-known in the context of multi-methods. Furthermore, generic algorithms often re-
quire certain relations between their argument types or between associated types—for
example that the value types of two different iterator types are the same. The current
framework does not support expressing such requirements at run-time.

Generic programming is a powerful paradigm supporting the creation of efficient,
easily composed extensible libraries. Our goal has been to expand the applicability
of generic programming beyond the domain of static polymorphism. We illustrated
state of the art techniques for extending generic programming into the realm of dy-
namic polymorphism, borrowing from ConceptC++ concepts and concept maps, tra-
ditional generic programming interfaces, template metaprogramming, design patterns,
and object-oriented design techniques. While the poly<> implementation is complex,
its use can be made transparent to the end-user. The benefits, such as the ability to
create non-intrusive heterogeneous containers, the improved control over lifetime and
aliasing issues, and the transparent adaptation of statically polymorphic interfaces are
substantial.
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